flotation kinetics
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 35)

H-INDEX

20
(FIVE YEARS 5)

2021 ◽  
Vol 28 (12) ◽  
pp. 1887-1897
Author(s):  
Hamed Gholami ◽  
Bahram Rezai ◽  
Ahmad Hassanzadeh ◽  
Akbar Mehdilo ◽  
Mohammadreza Yarahmadi

Author(s):  
Chao Ni ◽  
Qingshan Zhang ◽  
Mingguo Jin ◽  
Guangyuan Xie ◽  
Yaoli Peng ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1021
Author(s):  
Sugyeong Lee ◽  
Charlotte E. Gibson ◽  
Ahmad Ghahreman

The use of alkaline pressure oxidation to pretreat refractory gold ore often results in insufficient gold recovery (<60%) in downstream thiosulfate leaching. To improve gold recovery, flotation was considered for the separation of carbonaceous matter (C-matter). In this study, the effect of MIBC on C-matter flotation was investigated to understand the role of the frother in bubble and froth formation and on flotation kinetics. MIBC dosages between 30 and 150 g/t were used in combination with 500 g/t of kerosene as a collector. The results showed that the recovery and selectivity of C-matter were improved with increasing MIBC dosages. Improved selectivity at higher MIBC dosages was attributed to faster C-matter recovery as bubble size decreased to the critical coalescence concentration (CCC) and to changes to the foam structure. Analysis of flotation kinetics showed that the flotation rate increased as the MIBC dosage increased due to the decreasing bubble size and the reduced induction time caused by the interaction between the collector and the frother. The results of this study explain the role of MIBC in C-matter flotation and can be used as a design basis for scavenger-cleaner flotation testing. Overall, the results show the potential for flotation as a means to improve gold recovery in thiosulfate leaching through the removal of C-matter.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 869
Author(s):  
Yoshiyuki Tanaka ◽  
Hajime Miki ◽  
Gde Pandhe Wisnu Suyantara ◽  
Yuji Aoki ◽  
Tsuyoshi Hirajima

The copper ore in Chilean copper porphyry deposits is often associated with molybdenum minerals. This copper–molybdenum (Cu–Mo) sulfide ore is generally mined from various locations in the mining site; thus, the mineral composition, oxidation degree, mineral particle size, and grade vary. Therefore, in the mining operation, it is common to blend the ores mined from various spots and then process them using flotation. In this study, the floatability of five types of Cu–Mo ores and the blending of these ores in seawater was investigated. The oxidation degree of these Cu–Mo ores was evaluated, and the correlation between flotation recovery and oxidation degree is presented. Furthermore, the flotation kinetics of each Cu–Mo ore were calculated based on a mineralogical analysis using mineral liberation analysis (MLA). A mineralogical prediction model was proposed to estimate the flotation behavior of blended Cu–Mo ore as a function of the flotation behavior of each Cu–Mo ore. The flotation results show that the recovery of copper and molybdenum decreased with the increasing copper oxidization degree. In addition, the recovery of blended ore can be predicted via the flotation rate equation, using the maximum recovery (Rmax) and flotation rate coefficient (k) determined from the flotation rate analysis of each ore before blending. It was found that Rmax and k of the respective minerals slightly decreased with increasing the degree of copper oxidation. Moreover, Rmax varied greatly depending on the mineral species. The total copper and molybdenum recovery were strongly affected by the degree of copper oxidation as the mineral fraction in the ore varied greatly depending upon the degree of oxidation.


2021 ◽  
Vol 170 ◽  
pp. 107006
Author(s):  
Behzad Vaziri Hassas ◽  
Sabri Kouachi ◽  
Amir Eskanlou ◽  
Mustapha Bouhenguel ◽  
Mehmet S. Çelik ◽  
...  

2021 ◽  
Vol 170 ◽  
pp. 107054
Author(s):  
Lucas Pereira ◽  
Max Frenzel ◽  
Duong Huu Hoang ◽  
Raimon Tolosana-Delgado ◽  
Martin Rudolph ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2880
Author(s):  
Hamid Khoshdast ◽  
Alireza Gholami ◽  
Ahmad Hassanzadeh ◽  
Tomasz Niedoba ◽  
Agnieszka Surowiak

This work aims at presenting an advanced simulation approach for a novel rhamnolipidic-based bioflotation process to remove chromium from wastewater. For this purpose, the significance of key influential operating variables including initial solution pH (2, 4, 6, 8, 10 and 12), rhamnolipid to chromium ratio (RL:Cr = 0.010, 0.025, 0.050, 0.075 and 0.100), reductant (Fe) to chromium ratio (Fe:Cr of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0), and air flowrate (50, 100, 150, 200 and 250 mL/min) were investigated and evaluated using Analysis of Variance (ANOVA) method. The RL as both collector and frother was produced using a pure strain of Pseudomonas aeruginosa MA01 under specific conditions. The bioflotation tests were carried out within a bubbly regimed column cell with the dimensions of 60×5.70×0.1 cm. Four optimization techniques based on Artificial Neural Network (ANN) including Cuckoo, genetic, firefly and biogeography-based optimization algorithms were applied to 113 experiments to identify the optimum values of studied factors. The ANOVA results revealed that all four variables influence the bioflotation performance through a non-linear trend. Their influences, except for aeration rate, were found statistically significant (p-value < 0.05), and all parameters followed the normal distribution according to Anderson-Darlin (AD) criterion. Maximum chromium removal of about 98% was achieved at pH of 6, rhamnolipid to chromium ratio of 0.05, air flowrate of 150 mL/min, and Fe to Cr ratio of 1.0. Flotation kinetics study indicated that chromium bioflotation follows the first-order kinetic model with a rate of 0.023 sec−1. According to the statistical assessment of the model accuracy, the firefly algorithm (FFA) with a structure of 4-9-1 yielded the highest level of reliability with the mean squared, root mean squared, percentage errors and correlation coefficient values of test-data of 0.0038, 0.0617, 3.08% and 96.92%, respectively. These values were evidences of the consistency of the well-structured ANN method to simulate the process.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 459
Author(s):  
Seyed Hassan Amini ◽  
Aaron Noble

The design of cell-based flotation circuits is often completed in two distinct phases, namely circuit structure identification and equipment sizing selection. While recent literature studies have begun to address the implications of stochastic analysis, industrial practice in flotation circuit design still strongly favors the use of deterministic metallurgical modeling approaches. Due to the complexity of the available mathematical models, most flotation circuit design techniques are constructed based on deterministic models. Neglecting the impact of various sources of uncertainty may result in the identification of circuit solutions that are only optimal in a narrow region of specific operating scenarios. One promising strategy to address this shortcoming is through the Sample Average Approximation (SAA) methodology, a stochastic approach to handling uncertainty that has been widely applied in other disciplines such as supply chain and facility location management problems. In this study, a techno-economic optimization algorithm was formulated to select the optimal size and number of flotation cells for a fixed circuit structure while considering potential uncertainty in several input parameter including feed grade, kinetic coefficients, and metal price. Initially, a sensitivity analysis was conducted to screen the uncertain parameters. After simplifying the optimization problem, the SAA approach was implemented to determine the equipment configuration (i.e., cell size and number) that maximizes the plant’s net present value while considering the range of potential input values due to parameter uncertainty. The SAA methodology was found to be useful in analyzing uncertainty in flotation kinetics; however, the approach did not provide a useful means to assess the influence of uncertainties in ore grade and metal price, as these values are not significant in determining equipment size but rather influence the optimal circuit structure, which was not considered in this study. Results from an application example indicate that the SAA approach produces optimal solutions not initially identified in a deterministic optimization, and these SAA solutions tend to provide greater robustness to uncertainty and variation in the flotation kinetics.


Sign in / Sign up

Export Citation Format

Share Document