Post-fire temporal trends in soil-physical and -hydraulic properties and simulated runoff generation: Insights from different burn severities in the 2013 Black Forest Fire, CO, USA

Author(s):  
Brian A. Ebel ◽  
John A. Moody ◽  
Deborah A. Martin
Author(s):  
Gregory S. Marzolf ◽  
Ronald M. Sega

Abstract This research hypothesizes that changes in command and control along with increased levels of trust and training led to a stronger response in Colorado’s 2013 Black Forest fire than that of the 2012 Waldo Canyon fire. Because the fires were categorized as the worst in the region’s history, and because they occurred in very close succession, in roughly the same area, involving many of the same responders, the fires provide valuable insights into how the response system adapted, or failed to adapt, to overcome key events under both scenarios. The study found that the ability to tailor command and control and supporting response structures to a particular event instead of using traditional rigid frameworks were instrumental to a more effective response. The study goes on to suggest that even though the Black Forest fire was met with an improved response, a systems approach is needed to better accommodate increasingly complex future events.


2005 ◽  
Vol 307 (1-4) ◽  
pp. 294-311 ◽  
Author(s):  
Babacar Ndiaye ◽  
Michel Esteves ◽  
Jean-Pierre Vandervaere ◽  
Jean-Marc Lapetite ◽  
Michel Vauclin

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2537
Author(s):  
Cuiting Dai ◽  
Tianwei Wang ◽  
Yiwen Zhou ◽  
Jun Deng ◽  
Zhaoxia Li

Soil architecture exerts an important control on soil hydraulic properties and hydrological responses. However, the knowledge of hydraulic properties related to soil architecture is limited. The objective of this study was to investigate the influences of soil architecture on soil physical and hydraulic properties and explore their implications for runoff generation in a small agricultural watershed in the Three Gorges Reservoir Area (TGRA) of southern China. Six types of soil architecture were selected, including shallow loam sandy soil in grassland (SLSG) and shallow loam sandy soil in cropland (SLSC) on the shoulder; shallow sandy loam in grassland (SSLG) and shallow sandy loam in cropland (SSLC) on the backslope; and deep sandy loam in grassland (DSLG) and deep sandy loam in cropland (DSLC) on the footslope. The results showed that saturated hydraulic conductivity (Ksat) was significantly higher in shallow loamy sand soil under grasslands (8.57 cm h−1) than under croplands (7.39 cm h−1) at the topsoil layer. Total porosity was highest for DSLC and lowest for SSLG, averaged across all depths. The proportion of macropores under SLSG was increased by 60% compared with under DSLC, which potentially enhanced water infiltration and decreased surface runoff. The landscape location effect showed that at the shoulder, Ksat values were 20% and 47% higher than values at the backslope and footslope, respectively. It was inferred by comparing Ksat values with 30 min maximum rainfall intensity at the watershed, that surface runoff would be generated in SSLC, DSLG, and DSLC sites by storms, but that no overland flow is generated in both sites at the shoulder and SSLG. The significantly higher Ksat under grasslands in comparison to croplands at the backslope indicated that planting grasses would increase infiltration capacity and mitigate runoff generation during storm events. The findings demonstrated that croplands in footslope positions might be hydrologically sensitive areas in this small agricultural watershed.


2020 ◽  
Vol 29 (2) ◽  
pp. 206-217
Author(s):  
Jianyuan Ni ◽  
Monica L. Bellon-Harn ◽  
Jiang Zhang ◽  
Yueqing Li ◽  
Vinaya Manchaiah

Objective The objective of the study was to examine specific patterns of Twitter usage using common reference to tinnitus. Method The study used cross-sectional analysis of data generated from Twitter data. Twitter content, language, reach, users, accounts, temporal trends, and social networks were examined. Results Around 70,000 tweets were identified and analyzed from May to October 2018. Of the 100 most active Twitter accounts, organizations owned 52%, individuals owned 44%, and 4% of the accounts were unknown. Commercial/for-profit and nonprofit organizations were the most common organization account owners (i.e., 26% and 16%, respectively). Seven unique tweets were identified with a reach of over 400 Twitter users. The greatest reach exceeded 2,000 users. Temporal analysis identified retweet outliers (> 200 retweets per hour) that corresponded to a widely publicized event involving the response of a Twitter user to another user's joke. Content analysis indicated that Twitter is a platform that primarily functions to advocate, share personal experiences, or share information about management of tinnitus rather than to provide social support and build relationships. Conclusions Twitter accounts owned by organizations outnumbered individual accounts, and commercial/for-profit user accounts were the most frequently active organization account type. Analyses of social media use can be helpful in discovering issues of interest to the tinnitus community as well as determining which users and organizations are dominating social network conversations.


1993 ◽  
Vol 32 (01) ◽  
pp. 79-81 ◽  
Author(s):  
P. Millard ◽  
S. McClean

Abstract:The flow of patients through geriatric hospitals has been previously described in terms of acute and long-stay states where the bed occupancy at a census point is modelled by a mixed exponential model. Using data for sixteen years the model was fitted to successive annual census points, in order to provide a description of temporal trends. While the number of acute patients has remained fairly stable during the period, the model shows that there has been a decrease in the number of long-stay patients. Mean lengths of stay in our geriatric hospital before death or discharge have decreased during the study period for both acute and long-stay patients.Using these fits of the mixed exponential model to census data, a method is provided for predicting future turnover of patients. These predictions are reasonably good, except when the turnover patterns go through a period of flux in which assumption of stability no longer holds. Overall, a methodology is presented which relates census analysis to the behaviour of admission cohorts, thus producing a means of predicting future behaviour of patients and identifying where there is a change in patterns.


2020 ◽  
pp. 57-65
Author(s):  
Eusébio Conceiçã ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Jorge Raposo ◽  
Domingos Xavier Viegas ◽  
...  

This paper refers to a numerical study of the hypo-thermal behaviour of a pine tree in a forest fire environment. The pine tree thermal response numerical model is based on energy balance integral equations for the tree elements and mass balance integral equation for the water in the tree. The simulation performed considers the heat conduction through the tree elements, heat exchanges by convection between the external tree surfaces and the environment, heat exchanges by radiation between the flame and the external tree surfaces and water heat loss by evaporation from the tree to the environment. The virtual three-dimensional tree model has a height of 7.5 m and is constituted by 8863 cylindrical elements representative of its trunks, branches and leaves. The fire front has 10 m long and a 2 m high. The study was conducted taking into account that the pine tree is located 5, 10 or 15 m from the fire front. For these three analyzed distances, the numerical results obtained regarding to the distribution of the view factors, mean radiant temperature and surface temperatures of the pine tree are presented. As main conclusion, it can be stated that the values of the view factor, MRT and surface temperatures of the pine tree decrease with increasing distance from the pine tree in front of fire.


Sign in / Sign up

Export Citation Format

Share Document