Liming legacy effects associated with the world's largest soil liming and regreening program in Sudbury, Ontario, Canada

Author(s):  
Edward J. Kellaway ◽  
M. Catherine Eimers ◽  
Shaun A. Watmough
Keyword(s):  
Chemosphere ◽  
2021 ◽  
pp. 130682
Author(s):  
Ming Li ◽  
Dongming Huang ◽  
Yuanhong Zhou ◽  
Jing Zhang ◽  
Xintao Lin ◽  
...  

2021 ◽  
Author(s):  
Nadia S Arias ◽  
Fabián G Scholz ◽  
Guillermo Goldstein ◽  
Sandra J Bucci

Abstract Low temperatures and drought are the main environmental factors affecting plant growth and productivity across most of the terrestrial biomes. The objective of this study was to analyze the effects of water deficits before the onset of low temperatures in winter to enhance freezing resistance in olive trees. The study was carried out near the coast of Chubut, Argentina. Plants of five olive cultivars were grown out-door in pots and exposed to different water deficit treatments. We assessed leaf water relations, ice nucleation temperature (INT), cell damage (LT50), plant growth and leaf nitrogen content during summer and winter in all cultivars and across water deficit treatments. Leaf INT and LT50 decreased significantly from summer to winter within each cultivar and between treatments. We observed a trade-off between resources allocation to freezing resistance and vegetative growth, such that an improvement in resistance to sub-zero temperatures was associated to lower growth in tree height. Water deficit applied during summer increased the amount of osmotically active solutes and decreased the leaf water potentials. This type of legacy effects persists during the winter after the water deficit even when treatment was removed, because of natural rainfalls.


2021 ◽  
Vol 310 ◽  
pp. 108630
Author(s):  
Zhaoqi Zeng ◽  
Wenxiang Wu ◽  
Quansheng Ge ◽  
Zhaolei Li ◽  
Xiaoyue Wang ◽  
...  

2015 ◽  
Vol 13 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Curtis Monger ◽  
Osvaldo E Sala ◽  
Michael C Duniway ◽  
Haim Goldfus ◽  
Isaac A Meir ◽  
...  
Keyword(s):  

2012 ◽  
Vol 15 (8) ◽  
pp. 813-821 ◽  
Author(s):  
Olga Kostenko ◽  
Tess F. J. van de Voorde ◽  
Patrick P. J. Mulder ◽  
Wim H. van der Putten ◽  
T. Martijn Bezemer

2021 ◽  
Author(s):  
Anna Schneider ◽  
Alexander Bonhage ◽  
Florian Hirsch ◽  
Alexandra Raab ◽  
Thomas Raab

<p>Human land use and occupation often lead to a high heterogeneity of soil stratigraphy and properties in landscapes within small, clearly delimited areas. Legacy effects of past land use also are also abundant in recent forest areas. Although such land use legacies can occur on considerable fractions of the soil surface, they are hardly considered in soil mapping and inventories. The heterogenous spatial distribution of land use legacy soils challenges the quantification of their impacts on the landscape scale. Relict charcoal hearths (RCH) are a widespread example for the long-lasting effect of historical land use on soil landscapes in forests of many European countries and also northeastern USA. Soils on RCH clearly differ from surrounding forest soils in their stratigraphy and properties, and are most prominently characterized by a technogenic substrate layer with high contents of charcoal. The properties of RCH soils have recently been studied for several regions, but their relevance on the landscape scale has hardly been quantified.</p><p>We analyse and discuss the distribution and ecological relevance of land use legacy soils across scales for RCH in the state of Brandenburg, Germany, with a focus on soil organic matter (SOM) stocks. Our analysis is based on a large-scale mapping of RCH from digital elevation models (DEM), combined with modelled SOM stocks in RCH soils. The distribution of RCH soils in the study region shows heterogeneity at different scales. The large-scale variation is related to the concentration of charcoal production to specific forest areas and the small-scale accumulation pattern is related to the irregular distribution of single RCH within the charcoal production fields. Considerable fractions of the surface area are covered by RCH soils in the major charcoal production areas within the study region. The results also show that RCH can significantly contribute to the soil organic matter stocks of forests, even for areas where they cover only a small fraction of the soil surface. The study highlights that considering land use legacy effects can be relevant for the results of soil mapping and inventories; and that prospecting and mapping land use legacies from DEM can contribute to improving such approaches.</p>


Sign in / Sign up

Export Citation Format

Share Document