Unveiling the characterization and development of prokaryotic community during the start-up and long-term operation of a pilot-scale anaerobic membrane bioreactor for the treatment of real municipal wastewater

Author(s):  
Zhe Kong ◽  
Lu Li ◽  
Jiang Wu ◽  
Chao Rong ◽  
Tianjie Wang ◽  
...  
2017 ◽  
Vol 8 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Xiaojie Mei ◽  
Zhiwei Wang ◽  
Yan Miao ◽  
Zhichao Wu

Abstract Anaerobic membrane bioreactor (AnMBR) processes are a promising method of recovering energy from municipal wastewater. In this study, a pilot-scale AnMBR with extremely short hydraulic retention time (HRT = 2.2 h) was operated at a flux of 6 L/(m2h) for 340 days without any membrane cleaning. The average value achieved for chemical oxygen demand (COD) removal was 87% and for methane yield was 0.12 L CH4/gCODremoved. Based on mass balance analysis, it was found that about 30% of total influent COD was used for methane conversion, 15% of COD for sulfate reduction, 10% for biomass growth and 10–20% of COD remained in the effluent. Microbial community analyses indicated that seasonal changes of feedwater (in terms of organic components and temperature) led to the variations of microbial community structures. Among the bacterial communities, Chloroflexi, Proteobacteria and Bacteroidetes were the three most predominant phyla. In the archaeal consortia, WCHA1-57 and Methanobacterium surpassed Methanosaeta and Methanolinea to become the predominant methanogens during the long-term operation of short HRT. The sulfate-reducing bacteria, accounting for less than 2% of total abundance of bacteria, might not be the dominant competitor against methanogens.


2004 ◽  
Vol 4 (1) ◽  
pp. 143-149 ◽  
Author(s):  
T. Itonaga ◽  
Y. Watanabe

This paper deals with the performance of a hybrid membrane bioreactor (MBR) combined with pre-coagulation/sedimentation. Primary clarifier effluent in a municipal wastewater treatment plant was fed into the hybrid MBR to investigate its performance during long-term operation. Pre-coagulation/sedimentation process efficiently removed the suspended solids including organic matter and phosphorus. Comparison of the hybrid MBR and conventional MBR was made in terms of the permeate quality and membrane fouling. As the organic loading to the MBR was significantly reduced by the pre-coagulation/sedimentation, production and accumulation of extracellular polymeric substances (EPS) may be limited. Therefore, the mixed liquor viscosity in the hybrid MBR was much lower than that in the conventional MBR. These effect caused by pre-coagulation/sedimentation brought a remarkable improvement in both permeate quality and membrane permeability.


Sign in / Sign up

Export Citation Format

Share Document