Impacts of vehicle emission on air quality and human health in China

Author(s):  
Zhenyu Luo ◽  
Yue Wang ◽  
Zhaofeng Lv ◽  
Tingkun He ◽  
Junchao Zhao ◽  
...  
Author(s):  
Anne Steinemann

Abstract Fragrance is used in consumer products around the world. However, fragrance has been associated with adverse effects on indoor and outdoor air quality and human health. Questions arise, such as the following: Why does fragrance in products pose problems? What are sources of emissions and exposures? What are health and societal effects? What are possible solutions? This paper examines the issue of fragranced consumer products and its science and policy dimensions, with a focus on the implications for air quality and human health. Results include new findings and new questions for future research directions.


2021 ◽  
Vol 214 (6) ◽  
pp. 254
Author(s):  
Graeme R Zosky ◽  
Stephen Vander Hoorn ◽  
Michael J Abramson ◽  
Sophie Dwyer ◽  
Donna Green ◽  
...  

2011 ◽  
Vol 111 (8) ◽  
pp. 1321-1327 ◽  
Author(s):  
Elena Fattore ◽  
Viviana Paiano ◽  
Alessandro Borgini ◽  
Andrea Tittarelli ◽  
Martina Bertoldi ◽  
...  

2021 ◽  
Author(s):  
Carla Gama ◽  
Alexandra Monteiro ◽  
Myriam Lopes ◽  
Ana Isabel Miranda

<p>Tropospheric ozone (O<sub>3</sub>) is a critical pollutant over the Mediterranean countries, including Portugal, due to systematic exceedances to the thresholds for the protection of human health. Due to the location of Portugal, on the Atlantic coast at the south-west point of Europe, the observed O<sub>3</sub> concentrations are very much influenced not only by local and regional production but also by northern mid-latitudes background concentrations. Ozone trends in the Iberian Peninsula were previously analysed by Monteiro et al. (2012), based on 10-years of O<sub>3</sub> observations. Nevertheless, only two of the eleven background monitoring stations analysed in that study are located in Portugal and these two stations are located in Porto and Lisbon urban areas. Although during pollution events O<sub>3</sub> levels in urban areas may be high enough to affect human health, the highest concentrations are found in rural locations downwind from the urban and industrialized areas, rather than in cities. This happens because close to the sources (e.g., in urban areas) freshly emitted NO locally scavenges O<sub>3</sub>. A long-term study of the spatial and temporal variability and trends of the ozone concentrations over Portugal is missing, aiming to answer the following questions:</p><p>-           What is the temporal variability of ozone concentrations?</p><p>-           Which trends can we find in observations?</p><p>-           How were the ozone spring maxima concentrations affected by the COVID-19 lockdown during spring 2020?</p><p>In this presentation, these questions will be answered based on the statistical analysis of O<sub>3</sub> concentrations recorded within the national air quality monitoring network between 2005 and 2020 (16 years). The variability of the surface ozone concentrations over Portugal, on the timescales from diurnal to annual, will be presented and discussed, taking into account the physical and chemical processes that control that variability. Using the TheilSen function from the OpenAir package for R (Carslaw and Ropkins 2012), which quantifies monotonic trends and calculates the associated p-value through bootstrap simulations, O<sub>3</sub> concentration long-term trends will be estimated for the different regions and environments (e.g., rural, urban).  Moreover, taking advantage of the unique situation provided by the COVID-19 lockdown during spring 2020, when the government imposed mandatory confinement and citizens movement restriction, leading to a reduction in traffic-related atmospheric emissions, the role of these emissions on ozone levels during the spring period will be studied and presented.</p><p> </p><p>Carslaw and Ropkins, 2012. Openair—an R package for air quality data analysis. Environ. Model. Softw. 27-28,52-61. https://doi.org/10.1016/j.envsoft.2011.09.008</p><p>Monteiro et al., 2012. Trends in ozone concentrations in the Iberian Peninsula by quantile regression and clustering. Atmos. Environ. 56, 184-193. https://doi.org/10.1016/j.atmosenv.2012.03.069</p>


2017 ◽  
Vol 200 ◽  
pp. 693-703 ◽  
Author(s):  
Jos Lelieveld

In atmospheric chemistry, interactions between air pollution, the biosphere and human health, often through reaction mixtures from both natural and anthropogenic sources, are of growing interest. Massive pollution emissions in the Anthropocene have transformed atmospheric composition to the extent that biogeochemical cycles, air quality and climate have changed globally and partly profoundly. It is estimated that mortality attributable to outdoor air pollution amounts to 4.33 million individuals per year, associated with 123 million years of life lost. Worldwide, air pollution is the major environmental risk factor to human health, and strict air quality standards have the potential to strongly reduce morbidity and mortality. Preserving clean air should be considered a human right, and is fundamental to many sustainable development goals of the United Nations, such as good health, climate action, sustainable cities, clean energy, and protecting life on land and in the water. It would be appropriate to adopt “clean air” as a sustainable development goal.


2018 ◽  
Vol 114 ◽  
pp. 73-82 ◽  
Author(s):  
Sumil K. Thakrar ◽  
Andrew L. Goodkind ◽  
Christopher W. Tessum ◽  
Julian D. Marshall ◽  
Jason D. Hill

2016 ◽  
Author(s):  
Ziqiang Tan ◽  
Yanwen Wang ◽  
Chunxiang Ye ◽  
Yi Zhu ◽  
Yingruo Li ◽  
...  

Abstract. Vehicle emissions are major sources of atmospheric pollutants in urban areas, especially in megacities around the world. Various vehicle emission control policies have been implemented to improve air quality. However, the effectiveness of these policies is unclear, due to a lack of systematic evaluation and sound methodologies. During the Asia-Pacific Economic Cooperation (APEC) Forum, China 2014, the Chinese government implemented the strictest vehicle emission control policy in the country's history, which provided an opportunity to evaluate its effectiveness, based on our recently developed method. To evaluate the vehicle emission reduction, we used a mobile research platform to measure the main air pollutants (PM2.5, black carbon (BC), SO2, CO, NOx and O3) on the 4th ring road of the city of Beijing, combined with a continuous wavelet transform method (CWT) to separate out "instantaneous emissions" by passing vehicles. The results suggested that our measurements captured the spatial distribution and variation of atmospheric pollutant concentrations on the 4th ring road. The "instantaneous concentration" decomposed by the CWT method represents on-road emissions better than other methods reported in the literature. With this method, we found that the daytime vehicle emission of CO and NOx decreased by 28.1 and 16.3 %, respectively, during the APEC period relative to the period before APEC, and by 39.3 and 38.5 %, respectively, relative to the period after APEC. The nighttime vehicle emissions of CO and NOx decreased by 56.0 and 60.7 %, respectively, during the APEC period relative to the period after APEC. Because vehicle emissions of NOx and CO contribute considerably to the total emissions of these pollutants in Beijing, the vehicle emission control policy implementation was extremely successful in controlling air quality during APEC 2014, China.


Sign in / Sign up

Export Citation Format

Share Document