Changeable Young’s modulus with large elongation-to-failure in β-type titanium alloys for spinal fixation applications

2014 ◽  
Vol 82 ◽  
pp. 29-32 ◽  
Author(s):  
Huihong Liu ◽  
Mitsuo Niinomi ◽  
Masaaki Nakai ◽  
Junko Hieda ◽  
Ken Cho
2014 ◽  
Vol 2014 (0) ◽  
pp. _G0410204--_G0410204-
Author(s):  
Kengo NARITA ◽  
Mitsuo NIINOMI ◽  
Masaaki NAKAI ◽  
SUYALATU ◽  
Hisashi SOYAMA ◽  
...  

2019 ◽  
Vol 946 ◽  
pp. 309-314 ◽  
Author(s):  
Anatoly G. Illarionov ◽  
S.V. Grib ◽  
A.V. Huppeev

The relationship between the phase composition and the Young’s modulus in quenched PT-7M, Ti-6Al-7Nb, BT16 titanium alloys has been studied using the structural analysis, thermodynamic calculations in the Thermo-Calc software and micro-indentation. It is found that the nature of the change in the Young’s modulus in the investigated titanium alloys after quenching from the two-phase α+β-region depends on the chemical composition of the alloy, which determines the nature of the observed metastable phases (α', α", ω, β). The correlation between the extreme change in the Young’s modulus from the quenching temperature and the so-called interatomic bonding force (Fb) calculated from the electronic structure parameters of the α, α', β phases was shown for the Ti-6Al-7Nb alloy. The relationship between the limits of the Young’s modulus of the investigated alloys during quenching with the level of their alloying with α-and β-stabilizers is shown.


2020 ◽  
Vol 321 ◽  
pp. 02004
Author(s):  
M. Ikedaa ◽  
M. Ueda ◽  
M. Ninomi

Titanium and its alloys have a high specific strength, excellent corrosion resistance, and good biocompatibility. Therefore, these alloys are adopted as raw materials for artificial bones and joints. Furthermore, these alloys are used as materials for dental surgery. In the development of alloy design, beta-type titanium alloys that possess a lower Young’s modulus than other types of titanium alloys, e.g., Ti-6Al-4V alpha-beta-type alloys, are being actively investigated worldwide. Based on these studies, titanium-niobium-tantalum and zirconium system alloys were developed. For example, Ti-29Nb-13Ta-4.6Zr alloy has a low Young’s modulus, excellent biocompatibility, and improved mechanical properties. Many researchers are actively investigating surface modifications and surface treatments. Additive manufacturing, namely 3D printing, wherein metal powders are piled up layer by layer to produce goods without a mold, has attracted attention in many fields, including manufacture of implants, especially porous structural implants with a low Young’s modulus. It is very important that titanium and its alloys be applied to health-care goods, e.g., wheelchairs and prostheses. Therefore, we herein consider four topics: alloy development, coating and surface modification, additive manufacturing, and health care applications.


2009 ◽  
Vol 618-619 ◽  
pp. 303-306 ◽  
Author(s):  
Zhen Tao Yu ◽  
Gui Wang ◽  
Xi Qun Ma ◽  
Matthew S. Dargusch ◽  
Jian Ye Han ◽  
...  

The effects of alloy chemistry and heat treatment on the microstructure and mechanical properties of Ti-Nb-Zr-Mo-Sn near  type titanium alloys have been investigated. Near β titanium alloys consisting of non-toxic alloying elements Mo, Nb, Zr, Sn possess a low Young’s modulus, and moderate strength and plasticity. As the hot rolled TLM alloy (Ti-25Nb-3Zr-3Mo-2Sn) possesses high strength and low Young’s modulus a detailed investigation is performed for this alloy. Solution treatment of the hot rolled TLM alloy reduces strength and increases ductility without affecting the Young’s modulus. Ageing of the solution treated TLM alloy reduces elongation and increases the Young’s modulus with little change in strength. Both solution treated and aged conditions show features of two stage yielding associated with a strain induced martensitic transformation.


PRICM ◽  
2013 ◽  
pp. 1635-1641
Author(s):  
Huihong Liu ◽  
Mitsuo Niinomi ◽  
Masaaki Nakai ◽  
Junko Hieda ◽  
Ken Cho

2018 ◽  
Vol 941 ◽  
pp. 1228-1231 ◽  
Author(s):  
Yonosuke Murayama ◽  
Hiroto Shioiri

Metastable beta Ti-Cr-Sn-Zr alloys used as biomaterial show low Young’s modulus and super-elasticity according to the phase stability of their beta phase. In this study, we substituted Nb and Fe for Cr in metastable beta Ti-2Cr-6Sn-45Zr alloy and investigated their effect. We investigated how the added amount of Cr, Nb and Fe influences the phase stability and the properties of low Young’s modulus and super-elasticity in Ti-x-Sn-Zr (x=Cr, Nb or Fe) alloys. The Young’s modulus of a Ti-x-Sn-Zr (x=Cr, Nb or Fe) alloy decreases with the addition of Cr, Nb or Fe. However, the Young’s modulus of a Ti-x-Sn-Zr (x=Cr, Nb or Fe) alloy increases with the addition of Cr, Nb or Fe after showing own minimum value respectively. Minimum Young’s modulus of several Ti-x-Sn-Zr (x=Cr, Nb or Fe) alloys were under 50GPa. The required amount of Cr, Nb or Fe in the Ti-x-Sn-Zr (x=Cr, Nb or Fe) alloy having minimum Young’s modulus is different according to the beta stabilizing ability of each element. Fe amounts were the smallest and Nb amounts were the largest. Ti-x-Sn-Zr (x=Cr, Nb or Fe) alloy with minimum Young’s modulus shows a stress-induced martensitic transformation. However, only Ti-Cr-Sn-Zr alloys showed definite super-elasticity. The recovered strain by super-elasticity is small in Ti-Nb-Sn-Zr alloy. Ti-Fe-Sn-Zr alloy didn’t show super-elasticity or large elongation.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1551
Author(s):  
Camelia Gabor ◽  
Daniel Cristea ◽  
Ioana-Laura Velicu ◽  
Tibor Bedo ◽  
Andrea Gatto ◽  
...  

The development of novel Ti-based amorphous or β-phase nanostructured metallic materials could have significant benefits for implant applications, due to improved corrosion and mechanical characteristics (lower Young’s modulus, better wear performance, improved fracture toughness) in comparison to the standardized α+β titanium alloys. Moreover, the devitrification phenomenon, occurring during heating, could contribute to lower input power during additive manufacturing technologies. Ti-based alloy ribbons were obtained by melt-spinning, considering the ultra-fast cooling rates this method can provide. The titanium alloys contain in various proportions Zr, Nb, and Si (Ti60Zr10Si15Nb15, Ti64Zr10Si15Nb11, Ti56Zr10Si15Nb19) in various proportions. These elements were chosen due to their reported biological safety, as in the case of Zr and Nb, and the metallic glass-forming ability and biocompatibility of Si. The morphology and chemical composition were analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy, while the structural features (crystallinity, phase attribution after devitrification (after heat treatment)) were assessed by X-ray diffraction. Some of the mechanical properties (hardness, Young’s modulus) were assessed by instrumented indentation. The thermal stability and crystallization temperatures were measured by differential thermal analysis. High-intensity exothermal peaks were observed during heating of melt-spun ribbons. The corrosion behavior was assessed by electrocorrosion tests. The results show the potential of these alloys to be used as materials for biomedical applications.


2014 ◽  
Vol 783-786 ◽  
pp. 1307-1312 ◽  
Author(s):  
Masaaki Nakai ◽  
Mitsuo Niinomi ◽  
Junko Hieda ◽  
Ken Cho ◽  
Kengo Narita ◽  
...  

In order to meet the requirements of the patients and surgeons simultaneously for spinal fixation applications, beta (β) -type Ti-Mo alloys with self-tunable Young’s modulus due to deformation have been developed to prevent the stress-shielding effect for patients and to suppress springback for surgeons. In this study, the effects of Mo on the deformation-induced omega-phase transformation were investigated and then the Mo content in binary Ti-Mo alloys was optimized in order to achieve a large increase in Young’s modulus via deformation-induced omega-phase transformation, leading to suppression of springback.


Sign in / Sign up

Export Citation Format

Share Document