scholarly journals Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel

2017 ◽  
Vol 133 ◽  
pp. 9-13 ◽  
Author(s):  
Binhan Sun ◽  
Nicolas Vanderesse ◽  
Fateh Fazeli ◽  
Colin Scott ◽  
Jianqiang Chen ◽  
...  
Metals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 2 ◽  
Author(s):  
Barbara Grzegorczyk ◽  
Aleksandra Kozłowska ◽  
Mateusz Morawiec ◽  
Rafał Muszyński ◽  
Adam Grajcar

Experimental investigations of the plastic instability phenomenon in a hot-rolled medium manganese steel were performed. The effects of tensile deformation in a temperature range of 20–140°C on the microstructure, mechanical properties, and flow stress serrations were analyzed. The Portevin–Le Chatelier (PLC) phenomenon was observed for the specimens deformed at 60 °C, 100 °C, and 140 °C. It was found that the deformation temperature substantially affects the type and intensity of serrations. The type of serration was changed at different deformation temperatures. The phenomenon was not observed at room temperature. The plastic instability occurring for the steel deformed at 60 °C was detected for lower strain levels than for the specimens deformed at 100 °C and 140 °C. The increase of the deformation temperature to 100 °C and 140 °C results in shifting the PLC effect to a post uniform deformation range. The complex issues related to the interaction of work hardening, the transformation induced plasticity (TRIP) effect, and the PLC effect stimulated by the deformation temperature were addressed.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1265
Author(s):  
Zhang Chen ◽  
Yanlin He ◽  
Weisen Zheng ◽  
Hua Wang ◽  
Yu Zhang ◽  
...  

A medium manganese steel with 7.5 wt.% Mn for automobile application was galvanized in a continuous Hot Dip Galvanizing (HDG) simulator under different galvanizing conditions. It was shown that the effects of dew point, annealing temperature and annealing atmosphere on the surface oxidation of steel could be comprehensively evaluated by the consideration of oxygen partial pressure P(O2). Although Mn2SiO4 was a thermodynamic stable phase when P(O2) varied from 10−28 to 10−21 atm, it was difficult to form Mn–Si–O composite oxide because there was no enrichment of silicon on the steel surface. So, this oxide was generally formed in the Fe substrate and had little effect on the galvanizability. With the increase in P(O2) above 10−25 atm, MnO particles in the form of the thermodynamic stable phase became coarser and tended to aggregate, which hindered the formation of a continuous inhibition layer, resulting in the defects of bare spots on the galvanized surface of the steel. When the oxygen partial pressure greater than 10−22 atm, film-like MnO layer was formed on the surface of steel sample, which obviously deteriorated the galvanizability. The galvanizability of the steel can be improved by the regulation of oxygen partial pressure; based on this, the reasonable zinc plating process parameters can be developed.


2018 ◽  
Vol 25 (12) ◽  
pp. 1265-1269 ◽  
Author(s):  
Lei Zhang ◽  
Cun-yu Wang ◽  
Heng-chang Lu ◽  
Wen-quan Cao ◽  
Chang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document