Quantitative contribution of climate change and human activities to runoff changes in the Bahe River watershed of the Qinling Mountains, China

2019 ◽  
Vol 51 ◽  
pp. 101729 ◽  
Author(s):  
Yi He ◽  
Haijun Qiu ◽  
Jinxi Song ◽  
Yan Zhao ◽  
Limei Zhang ◽  
...  
Author(s):  
Yi He ◽  
Yiyi Hu ◽  
Jinxi Song ◽  
Xiaohui Jiang

Climate and underlying surface changes have a profound impact on runoff in the Qinling Mountains. This study attempts to identify the difference in runoff changes of two rivers in the south and north of China’s south-north transitional zone under climate change. The Pettit test and Mann-Kendall test were used to investigate the abrupt change and trend analysis on runoff in the Ba River watershed and Jinqian River watershed from 1960 to 2014. The coupled energy-water balance equation based on the Budyko hypothesis estimated the climate and landscape elasticity of runoff followed by attribution analysis of runoff in these two watersheds. The results showed that annual runoff in the Jinqian River (in the southern Qinling Mountains) and the Ba River (in the northern Qinling Mountains) exhibited a significant decreasing trend at P<0.05 and P<0.01, respectively. Abrupt runoff changes occurred in 1989 and 1992 in the Ba River and Jinqian River, respectively. The attribution analysis showed that the change in potential evapotranspiration had little impact on runoff in the southern and northern Qinling Mountains. In contrast, the dominant factors leading to runoff reduction were the change in precipitation and catchment landscape. The contributions of climate change and land surface alteration to runoff changes in the Ba River watershed and Jinqian watershed were 38.08% and 61.92%, and 23.95% and 76.05%, respectively. This study can provide a scientific reference for water resource protection in the south-north transitional zone.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 521
Author(s):  
Qinghe Zhao ◽  
Shengyan Ding ◽  
Xiaoyu Ji ◽  
Zhendong Hong ◽  
Mengwen Lu ◽  
...  

Human activities are increasingly recognized as having a critical influence on hydrological processes under the warming of the climate, particularly for dam-regulated rivers. To ensure the sustainable management of water resources, it is important to evaluate how dam construction may affect surface runoff. In this study, using Mann–Kendall tests, the double mass curve method, and the Budyko-based elasticity method, the effects of climate change and human activities on annual and seasonal runoff were quantified for the Yellow River basin from 1961–2018; additionally, effects on runoff were assessed after the construction of the Xiaolangdi Dam (XLD, started operation in 2001) on the Yellow River. Both annual and seasonal runoff decreased over time (p < 0.01), due to the combined effects of climate change and human activities. Abrupt changes in annual, flood season, and non-flood season runoff occurred in 1986, 1989, and 1986, respectively. However, no abrupt changes were seen after the construction of the XLD. Human activities accounted for much of the reduction in runoff, approximately 75–72% annually, 81–86% for the flood season, and 86–90% for the non-flood season. Climate change approximately accounted for the remainder: 18–25% (annually), 14–19% (flood season), and 10–14% (non-flood season). The XLD construction mitigated runoff increases induced by heightened precipitation and reduced potential evapotranspiration during the post-dam period; the XLD accounted for approximately 52% of the runoff reduction both annually and in the non-flood season, and accounted for approximately −32% of the runoff increase in the flood season. In conclusion, this study provides a basic understanding of how dam construction contributes to runoff changes in the context of climate change; this information will be beneficial for the sustainable management of water resources in regulated rivers.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dandong Cheng ◽  
Guizeng Qi ◽  
Jinxi Song ◽  
Yixuan Zhang ◽  
Hongying Bai ◽  
...  

Quantitative assessment of the contributions of climate change and human activities to vegetation change is important for ecosystem planning and management. To reveal spatial differences in the driving mechanisms of vegetation change in the Qinling Mountains, the changing patterns of the normalized difference vegetation index (NDVI) in the Qinling Mountains during 2000–2019 were investigated through trend analysis and multiple regression residuals analysis. The relative contributions of climate change and human activities on vegetation NDVI change were also quantified. The NDVI shows a significant increasing trend (0.23/10a) from 2000 to 2019 in the Qinling Mountains. The percentage of areas with increasing and decreasing trends in NDVI is 87.96% and 12.04% of the study area, respectively. The vegetation change in the Qinling Mountains is caused by a combination of climate change and human activities. The Tongguan Shiquan line is a clear dividing line in the spatial distribution of drivers of vegetation change. Regarding the vegetation improvement, the contribution of climate change and human activities to NDVI increase is 51.75% and 48.25%, respectively. In the degraded vegetation area, the contributions of climate change and human activities to the decrease in NDVI were 22.11% and 77.89%, respectively. Thus, vegetation degradation is mainly caused by human activities. The implementation of policies, such as returning farmland to forest and grass, has an important role in vegetation protection. It is suggested that further attention should be paid to the role of human activities in vegetation degradation when formulating corresponding vegetation protection measures and policies.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3473
Author(s):  
Shanjun Zhang ◽  
Jia Liu ◽  
Chuanzhe Li ◽  
Fuliang Yu ◽  
Lanshu Jing ◽  
...  

Climate change and human activities are two important factors affecting surface runoff. In water resource management and planning, it is generally important to separate the contribution of these factors when assessing runoff changes. The Changbai Mountain area is rich in water resources and is an important hydropower energy base for Northeast China. This study used Sen’s slope estimator to explore trends in runoff precipitation and evapotranspiration from 1960 to 2016, and the results showed a downward trend in runoff and an upward trend in precipitation and evaporation in most areas. The mutation point of the annual time series for the observed runoff was estimated, and the time series was divided into the base period (1960–1975) and impact period (1976–2016). Based on the Budyko framework, we performed attribution analysis of the runoff changes, and analyzed the difference between the mountainous region and the whole basin. We determined that the impacts of climate change and human activities, on average, accounted for decreases in the runoff by 60.15% and 39.85%, respectively, for the Second Songhua River Basin; 73.74% and 26.26%, respectively, for the Tumen River Basin; 84.76% and 15.24%, respectively, for the Yalu River Basin; human activities were the main causes of runoff changes in the Changbai Mountain area; climate change was the main cause of runoff changes in mountainous regions. The results of this study show that the reasons for the change in runoff in mountainous regions and the whole basin in the same area are different, which has some illuminating significance for water resources management of different elevation areas.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3154
Author(s):  
Chenlu Huang ◽  
Qinke Yang ◽  
Hui Zhang

Qinling Mountains is the north–south boundary of China’s geography; the vegetation changes are of great significance to the survival of wildlife and the protection of species habitats. Based on Landsat products in the Google Earth Engine (GEE) platform, Pearson’s correlation coefficient method, and classification and regression models, this study analyzed the changes in NDVI (Normalized Difference Vegetation Index) in the Qinling Mountains in the past 38 years and the sensitivity of its driving factors. Finally, residual analysis method and accumulate slope change rate are used to identify the impact of human activities and climate change on NDVI. The research results show the following: (1) The NDVI value in most areas of Qinling Mountains is at a medium-to-high level, and 99.76% of the areas correspond to an increasing trend of NDVI, and the significantly increased area accounts for more than 20%. (2) From 1981 to 2019, the NDVI of the Qinling Mountains increased from 0.63 to 0.78, showing an overall upward trend, and it increased significantly after 2006. (3) Sensitivity analysis results show that the western high-altitude area of Qinling Mountain area dominated by grassland is mainly affected by precipitation. The central and southeastern parts of the Qinling Mountains are significantly affected by temperature, and they are mainly distributed in areas dominated by forest. (4) The contribution rates of climate change and human activities to NDVI are 36.04% and 63.96%, respectively. Among them, the positive impact of human activities on the NDVI of the Qinling Mountains accounted for 99.85% of the area. The area with significant positive effect accounted for 36.49%. The significant negative effect area accounts for only 0.006%, mainly distributed in urban areas and coal mining areas.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Sidong Zeng ◽  
Chesheng Zhan ◽  
Fubao Sun ◽  
Hong Du ◽  
Feiyu Wang

Quantifying the effects of climate change and human activities on runoff changes is the focus of climate change and hydrological research. This paper presents an integrated method employing the Budyko-based Fu model, hydrological modeling, and climate elasticity approaches to separate the effects of the two driving factors on surface runoff in the Luan River basin, China. The Budyko-based Fu model and the double mass curve method are used to analyze runoff changes during the period 1958~2009. Then two types of hydrological models (the distributed Soil and Water Assessment Tool model and the lumped SIMHYD model) and seven climate elasticity methods (including a nonparametric method and six Budyko-based methods) are applied to estimate the contributions of climate change and human activities to runoff change. The results show that all quantification methods are effective, and the results obtained by the nine methods are generally consistent. During the study period, the effects of climate change on runoff change accounted for 28.3~46.8% while those of human activities contributed with 53.2~71.7%, indicating that both factors have significant effects on the runoff decline in the basin, and that the effects of human activities are relatively stronger than those of climate change.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yiyi Hu ◽  
Yi He

In recent decades, global climate change, especially human activities, has led to profound changes in the hydrological cycle and hydrological processes in watersheds. Taking the Yue River watershed in the Qinling Mountains in China as the study area, the Mann–Kendall test and Pettitt mutation test method were used to analyze the various characteristics of hydrological and climatic elements from 1960 to 2018. Then, the elastic coefficient method based on the Budyko framework was used to estimate the elastic coefficient of runoff change on each influencing factor. The results showed that the annual runoff decreased at a rate of 0.038 × 108 m3/a ( P > 0.05 ), and a significant abrupt change occurred in 1990. The annual precipitation and potential evapotranspiration (ET0) increased and decreased, with change rates of 0.614 mm/a and −0.811 mm/a ( P > 0.05 ), respectively. The elasticity coefficients of precipitation, ET0, and the underlying surface were 1.95, −0.95, and −0.85, respectively, indicating that annual runoff was most sensitive to the change in precipitation, followed by the change in ET0, and had the lowest sensitivity to the change in the underlying surface. Underlying surface change is the main factor of runoff decrease; the contribution is 89.07%. The total contribution of climate change to runoff change is 10.93%, in which the contributions of precipitation and ET0 are 17.59% and −6.66%, respectively. The NDVI reflecting underlying surface change has been increasing since 1990, which is an important reason for the runoff decrease.


Author(s):  
Junlong Liu ◽  
Jin Chen ◽  
Jijun Xu ◽  
Yuru Lin ◽  
Zhe Yuan ◽  
...  

Quantifying the contributions of climate change and human activities on runoff changes is of great importance for water resource management, sustainable water resource utilization, and sustainable development of society. In this study, hydrological and climatic data from hydrological and meteorological stations in the headwaters of the Yangtze River (YRHA) from 1966 to 2013 were used to quantitatively attribute the runoff change to the impacts of climate change and human activities separately. Firstly, the change trends in precipitation, runoff depth and potential evapotranspiration were analyzed by the Mann-Kendall test method. Three methods, secondly, including ordered clustering, Mann-Kendall and cumulative anomaly curve were adopted to detect the change points of runoff at Zhimenda hydrological station and partition the whole study period into two sub-periods at the change point (base and impacted periods). Then, the elasticity coefficient method based on the Budyko hypothesis was applied to calculate elasticity coefficients of runoff to precipitation, potential evapotranspiration and land use/cover during the two periods, and to evaluate the contributions of climate change and human activities. Results indicated that during 1966–2013, runoff depth, precipitation and potential evapotranspiration all showed a significant increasing trend, with increasing rates of 7.26 mm decade−1, 18.725 mm decade−1 and 7.228 mm decade−1, respectively. One change point (2004) was detected for the annual runoff, and 1966–2003 and 2004–2013 were respectively identified as base and impacted periods. The results of elasticity coefficients showed that the runoff depth was most sensitive to the change of precipitation during the two periods. The relative contributions of precipitation, potential evapotranspiration and parameter n to runoff changes were 99.7%, −6.08% and 3.88%, respectively. Furthermore, the coupled contribution rate of other factors was less than 2.5%. Generally, results indicated that precipitation is the main factor on the historical runoff changes in this basin.


Land ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 291 ◽  
Author(s):  
Meilin Wang ◽  
Yaqi Shao ◽  
Qun’ou Jiang ◽  
Ling Xiao ◽  
Haiming Yan ◽  
...  

Guishui River Basin in northwestern Beijing has ecological significance and will be one of the venues of the upcoming Beijing Winter Olympic Games in 2022. However, accelerating climate change and human disturbance in recent decades has posed an increasing challenge to the sustainable use of water in the basin. This study simulated the runoff of the Guishui River Basin using the Soil and Water Assessment Tool (SWAT) model to reveal the spatio-temporal variations of runoff in the basin and the impacts of climate change and human activities on the runoff changes. The results showed that annual runoff from 2004 to 2018 was relatively small, with an uneven intra-annual runoff distribution. The seasonal trends in runoff showed a decreasing trend in spring and winter while an increasing trend in summer and autumn. There was a first increasing and then decreasing trend of average annual runoff depth from northwest to southeast in the study area. In addition, the contributions of climate change and human activities to changes in runoff of the Guishui River Basin were 60% and 40%, respectively, but with opposite effects. The results can contribute to the rational utilization of water resources in the Guishui River Basin.


Sign in / Sign up

Export Citation Format

Share Document