Pressure drop and mass transfer study in structured catalytic packings

2012 ◽  
Vol 98 ◽  
pp. 78-87 ◽  
Author(s):  
Chengna Dai ◽  
Zhigang Lei ◽  
Qunsheng Li ◽  
Biaohua Chen
2008 ◽  
Vol 80 (4) ◽  
pp. 727-733 ◽  
Author(s):  
Annabelle Couvert ◽  
Marie-France Péculier ◽  
Alain Laplanche

1985 ◽  
Vol 50 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Andreas Zahn ◽  
Lothar Ebner ◽  
Kurt Winkler ◽  
Jan Kratochvíl ◽  
Jindřich Zahradník

The effect of two-phase flow regime on decisive hydrodynamic and mass transfer characteristics of horizontal-tube gas-liquid reactors (pressure drop, liquid holdup, kLaL) was determined in a cocurrent-flow experimental unit of the length 4.15 m and diameter 0.05 m with air-water system. An adjustable-height weir was installed in the separation chamber at the reactor outlet to simulate the effect of internal baffles on reactor hydrodynamics. Flow regime maps were developed in the whole range of experimental gas and liquid flow rates both for the weirless arrangement and for the weir height 0.05 m, the former being in good agreement with flow-pattern boundaries presented by Mandhane. In the whole range of experi-mental conditions pressure drop data could be well correlated as a function of gas and liquid flow rates by an empirical exponential-type relation with specific sets of coefficients obtained for individual flow regimes from experimental data. Good agreement was observed between values of pressure drop obtained for weirless arrangement and data calculated from the Lockhart-Martinelli correlation while the contribution of weir to the overall pressure drop was well described by a relation proposed for the pressure loss in closed-end tubes. In the region of negligible weir influence values of liquid holdup were again succesfully correlated by the Lockhart-Martinelli relation while the dependence of liquid holdup data on gas and liquid flow rates obtained under conditions of significant weir effect (i.e. at low flow rates of both phases) could be well described by an empirical exponential-type relation. Results of preliminary kLaL measurements confirmed the decisive effect of the rate of energy dissipation on the intensity of interfacial mass transfer in gas-liquid dispersions.


ACS Omega ◽  
2020 ◽  
Vol 5 (45) ◽  
pp. 29209-29221
Author(s):  
Ping Yue ◽  
Hongnan Yang ◽  
Chuanjian He ◽  
G. M. Yu ◽  
James J. Sheng ◽  
...  

Author(s):  
Mahmoud Kamaleddine ◽  
Dr Charles Bonnin ◽  
Dr Typhène Michel ◽  
Dr Léna Brunet-Errard ◽  
Dr Joëlle Aubin ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1269
Author(s):  
Yuzhen Jin ◽  
Weida Zhao ◽  
Zeqing Li

The deflector and the rod bank are commonly used to optimize flue gas distribution in the original spray tower (OST) of a wet flue gas desulfurization system (WFGD). In this paper, the internal optimization mechanism of the deflector desulfurization spray tower (DST) and the rod bank desulfurization spray tower (RBST) are studied. Based on the Euler–Lagrange method, the standard k-ε turbulence model, an SO2 absorption model and a porous media model, the numerical simulation of the desulfurization spray tower is carried out with the verification of the model rationality. The results show that there are gas-liquid contact intensification effects in DST and RBST. Compared with OST, gas-liquid contact intensification enhances the heat and mass transfer effects of DST and RBST. The temperature difference between inlet and outlet of flue gas increased by 3.3 K and the desulfurization efficiency of DST increased by 1.8%; the pressure drop decreased by 37 Pa. In RBST, the temperature difference between the flue gas inlet and outlet increased by 5.3 K and the desulfurization efficiency increased by 3.6%; the pressure drop increased by 33 Pa.


Author(s):  
Lindon Roberts ◽  
Ellen Nordgård-Hansen ◽  
Øyvind Mikkelsen ◽  
Svenn Anton Halvorsen ◽  
Robert A. Van Gorder

Sign in / Sign up

Export Citation Format

Share Document