Treatment of oil sands process-affected water with ceramic ultrafiltration membrane: Effects of operating conditions on membrane performance

2014 ◽  
Vol 122 ◽  
pp. 170-182 ◽  
Author(s):  
Alla Alpatova ◽  
Eun-Sik Kim ◽  
Shimiao Dong ◽  
Nian Sun ◽  
Pamela Chelme-Ayala ◽  
...  
2011 ◽  
Vol 64 (11) ◽  
pp. 2169-2176
Author(s):  
S. Barredo-Damas ◽  
M. I. Alcaina-Miranda ◽  
M. Gemma ◽  
M. I. Iborra-Clar ◽  
J. A. Mendoza-Roca

This work studies the performance of three commercial ceramic ultrafiltration membranes (ZrO2–TiO2) treating raw effluent from a textile industry. The effect of crossflow velocity at 3, 4 and 5 m s−1 as well as membrane characteristics, such as molecular weight cut-off (30, 50 and 150 kDa), on process performance were studied. Experiments were carried out in concentration mode in order to observe the effect of volume reduction factor simultaneously. Results showed a combined influence of both crossflow velocity and molecular weight cut-off on flux performance. TOC and COD removals up to 70% and 84% respectively were reached. On the other hand, almost complete color (>97%) and turbidity (>99%) removals were achieved for all the membranes and operating conditions.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 553
Author(s):  
Dimitra C. Banti ◽  
Manassis Mitrakas ◽  
Petros Samaras

A promising solution for membrane fouling reduction in membrane bioreactors (MBRs) could be the adjustment of operating parameters of the MBR, such as hydraulic retention time (HRT), food/microorganisms (F/M) loading and dissolved oxygen (DO) concentration, aiming to modify the sludge morphology to the direction of improvement of the membrane filtration. In this work, these parameters were investigated in a step-aerating pilot MBR that treated municipal wastewater, in order to control the filamentous population. When F/M loading in the first aeration tank (AT1) was ≤0.65 ± 0.2 g COD/g MLSS/d at 20 ± 3 °C, DO = 2.5 ± 0.1 mg/L and HRT = 1.6 h, the filamentous bacteria were controlled effectively at a moderate filament index of 1.5–3. The moderate population of filamentous bacteria improved the membrane performance, leading to low transmembrane pressure (TMP) at values ≤2 kPa for a great period, while at the control MBR the TMP gradually increased reaching 14 kPa. Soluble microbial products (SMP), were also maintained at low concentrations, contributing additionally to the reduction of ΤΜP. Finally, the step-aerating MBR process and the selected imposed operating conditions of HRT, F/M and DO improved the MBR performance in terms of fouling control, facilitating its future wider application.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 253-259
Author(s):  
C. Blöcher ◽  
T. Britz ◽  
H.D. Janke ◽  
H. Chmiel

The application of a membrane bioreactor (MBR) was investigated to treat polluted process water from fruit juice processing. The aim was either direct discharge or further treatment by nanofiltration/low pressure reverse osmosis to produce water of drinking quality. The results of a one-year test operation of the process in industrial scale at a fruit juice production plant are presented. Focus was centred on the influence of activated sludge characteristics on membrane performance. Under the operating conditions in place, neither solids content, particle size distribution nor addition of nutrient significantly affected the permeate flux which was considerably lower than expected (based on municipal wastewater treatment with MBRs). Instead, evidence was obtained that the insufficient permeate flux was most likely due to the high content of extracellular polymeric substances. However, it was impossible to relate in detail the substantial flux variations during the test run to AS characteristics or changes in microbial population.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 291 ◽  
Author(s):  
Thijs A. Peters ◽  
Marit Stange ◽  
Rune Bredesen

We report on the effect of butane and butylene on hydrogen permeation through thin state-of-the-art Pd–Ag alloy membranes. A wide range of operating conditions, such as temperature (200–450 °C) and H2/butylene (or butane) ratio (0.5–3), on the flux-reducing tendency were investigated. In addition, the behavior of membrane performance during prolonged exposure to butylene was evaluated. In the presence of butane, the flux-reducing tendency was found to be limited up to the maximum temperature investigated, 450 °C. Compared to butane, the flux-reducing tendency in the presence of butylene was severe. At 400 °C and 20% butylene, the flux decreases by ~85% after 3 h of exposure but depends on temperature and the H2/butylene ratio. In terms of operating temperature, an optimal performance was found at 250–300 °C with respect to obtaining the highest absolute hydrogen flux in the presence of butylene. At lower temperatures, the competitive adsorption of butylene over hydrogen accounts for a large initial flux penalty.


2016 ◽  
Vol 57 (52) ◽  
pp. 24788-24798 ◽  
Author(s):  
Irfana Moideen K ◽  
Arun M. Isloor ◽  
B. Garudachari ◽  
A.F. Ismail

2016 ◽  
Vol 52 (2) ◽  
pp. 364-373 ◽  
Author(s):  
Adhikara Resosudarmo ◽  
Linda Nappa ◽  
Yun Ye ◽  
Pierre Le-Clech ◽  
Vicki Chen

Sign in / Sign up

Export Citation Format

Share Document