Characterization and cleaning of anion-exchange membranes used in electrodialysis of polyphenol-containing food industry solutions; comparison with cation-exchange membranes

2019 ◽  
Vol 210 ◽  
pp. 636-650 ◽  
Author(s):  
M. Bdiri ◽  
L. Dammak ◽  
C. Larchet ◽  
F. Hellal ◽  
M. Porozhnyy ◽  
...  
Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 228 ◽  
Author(s):  
Shoichi Doi ◽  
Nobuya Takumi ◽  
Yuriko Kakihana ◽  
Mitsuru Higa

Systematic alkali immersion tests of cation-exchange membranes (CEM) with polyvinyl chloride (PVC) as their backing and binder were conducted to compare that of an Anion-exchange membrane (AEM) with the same PVC materials to investigate the mechanism of dehydrochlorination. In the immersion tests, originally colorless and transparent AEM turned violet, and chemical structure analysis showed that polyene was produced by the dehydrochlorination reaction. However, the CEM did not change in color, chemical structure or membrane properties during the test with less than 1M alkali solutions. According to the Donnan equilibrium theory and the experiments using CEM and AEM, the hydroxide ion concentration in the CEM was much lower than that in the AEM under the same conditions. However, when the alkali immersion test was performed using the CEM under more severe conditions (6 M for 168 h at 40 °C), there was a slight change in the color and chemical structure of the CEM, clearly indicating that not only AEMs, but also CEMs with PVC matrixes were deteriorated by alkali, depending on the conditions.


2016 ◽  
Vol 78 (12) ◽  
Author(s):  
Saidatul Sophia Sha’rani ◽  
Ebrahim Abouzari Lotf ◽  
Arshad Ahmad ◽  
Wan Atika Wan Ibrahim ◽  
Mohamed Mahmoud El-sayed Nasef ◽  
...  

The performance of vanadium redox flow battery (VRFB) is highly dependent on the efficiency of the membrane. Generally, anion exchange membranes and cation exchange membranes can be applied in the VRFB. In this paperwork, AMI-7001S anion exchange membrane and CMI-7000S cation exchange membranes were tested for their suitability in the VRFB application. Both of the membranes were originally used for electrocoat and water treatment system. In order to study the behavior of the membranes in the VRFB, several tests were performed. This includes VO2+ ion permeability, ionic conductivity, ion selectivity, chemical stability and single cell performance. The results obtained were compared to Nafion 117 which is a proton exchange membrane. This membrane is one of the most established membranes for VRFB. From the experiment, it can be summarized that the membranes are unsuitable to be used in VRFB. This is due to the low ion selectivity, poor chemical stability and high resistance.


2012 ◽  
Author(s):  
Mahadevan. M. ◽  
Lay Pee Lin ◽  
Zainal Abidin M. Y. ◽  
Mohamad Roji Sarmidi

Elektrodialisis merupakan suatu proses yang menggunakan perbezaan keupayaan elektrik sebagai daya penggerak yang menyebabkan pergerakan ion-ion dalam sesuatu elektronit. Membran yang digunakan dalam proses ini akan membenarkan sama ada cas-cas positif atau negatif sahaja melaluinya bergantung kepada kumpulan berfungsi yang terikat pada membran. Objektif projek penyelidikan ini adalah untuk menghasilkan membran pertukaran kation yang digunakan dalam proses elektrodialisis. Membran-membran pertukaran kation yang dihasilkan terbahagi kepada lima jenis, dan diberi nama sebagai BERL–30, 40, 50, 60, dan 70. Kelima-lima jenis membran ini berbeza dari segi kandungan resin yang berfungsi sebagai vektor pertukaran cas kation. Di samping penyediaan membran, penyelidikan ini juga meliputi aspek pencirian membran tersebut serta perbandingan dengan membran komersial. Kriteria yang dikaji adalah ketebalan membran, sifat kebolehtelapan membran, kapasiti pertukaran ion, kapasiti kepekatan ion kumpulan berfungsi, morfologi struktur membran, ujian kestabilan kimia dan kandungan air membran. Secara keseluruhannya, didapati peratus kandungan resin yang tinggi boleh meningkatkan kapasiti pertukaran ion, peratus kebolehtelapan membran serta kapasiti kepekatan ion kumpulan berfungsi. Antara membran yang dihasilkan, membran pertukaran kation jenis BERL–70 merupakan membran yang berpotensi dalam penggunaan proses elektrodialisis. Kata kunci: Membran pertukaran kation, polisulfona, resin pertukaran ion, ciri-ciri membran, elekrodialisis The objective of this work is to prepare an anion exchange membrane from polysulfone binder–ion exchange resin, which can be used in electrodialysis process. The cation exchange membranes were prepared by the solution casting method. The prepared anion exchange membranes are different from the conventional cation exchange membranes because its functional group is not derived from chlorosulfonic acid but from the absorption of anion exchange resins. The content of resins in each set of the prepared cation exchange membrane varied and were named as BERL–30, 40, 50, 60, and 70. In addition, the performance and behaviour of the prepared anion exchange membrane were evaluated and compared with the commercial cation exchange membranes. The physico-chemical properties of anion exchange membrane were determined by measuring the membrane thickness, permselectivity, and concentration of ion exchange capacity, chemical stability, water content, and scanning electron microscope (SEM). It was found that the increase in the quantity of resin (%) would increase the capacity of ion exchange, percentage of permselectivity, and capacity concentration of ion exchange group. The experimental results showed that cation exchange membrane has the potential to be used in electrodialysis process. Keywords: Cation exchange membrane, electrodialysis, polysulfone, ion exchange resin, membrane characterisation


2018 ◽  
Vol 8 (11) ◽  
pp. 2142 ◽  
Author(s):  
Joost Veerman ◽  
Damnearn Kunteng

Reverse electrodialysis (RED) is a method to produce electricity from the reversible mixing of two salt solutions with different concentrations. RED was first employed for energy generation using sea and river water. New fields of application are energy storage and heat-to-power conversion. In energy storage applications, a stack operates in ED mode during charge and in RED mode during discharge. In a heat-to-power system, the RED stack produces electricity and the outgoing solutions are returned to their original concentrations in a heat-driven regenerator. In both new applications, the salt solutions are circulated and there is a free choice of the combination of salt and membranes for optimal performance. However, classical polymer-based membranes have some disadvantages: they are less suited for operation at higher temperatures, have reduced permselectivity at higher concentrations, and are rather permeable to water, causing an imbalance of the feed waters. We developed a new concept of pseudo-membrane (PM): a metal sheet (sometimes covered with an insoluble salt) on which opposite electrochemical reactions occur at each side of the metal surface. Because a PM is dissolving at one side and growing at the other side during operation, the current should be inverted periodically. We tested a zinc sheet as a pseudo cation exchange membrane for Zn2+ ions and a silver chloride–covered silver plate as a pseudo anion exchange membrane for Cl− ions in three steps. First, a stack was built with Ag/AgCl membranes in combination with normal cation exchange membranes and operated with NaCl solutions. The next stack was based on Zn membranes together with normal anion exchange membranes. This stack was fed with ZnCl2 solutions. Finally, we tested a stack with zinc and Ag/AgCl pseudo-membranes with a ZnCl2 solution. The latter RED system worked; however, after standing for one night, the stack did not function and appeared to be damaged by redox reactions. This failure was the basis for general considerations about the possibilities of ED and RED hybrid stacks, consisting of a combination of classical and pseudo ion exchange membranes. Finally, we consider the possibility of using intercalation electrodes as a pseudo-membrane.


Author(s):  
B. Igliński ◽  
G. Piechota ◽  
P. Iwański

Modification of conventional citric acid technology has been proposed. Calcium citrate was converted into sodium citrate, which then went through electrodialysis with a bipolar membrane. The electrodialysis was carried out using the following membranes produced by Tokuyama Corporation (Japan): bipolar Neosepta BP, anion-exchange Neosepta ACM, cation-exchange Neosepta CMX; as well as the membranes produced by FumaTech GmbH (Germany): bipolar FBM, anion-exchange FAB and cation-exchange FKB. It was found that there are important relations between current efficiency, current density and energy consumption. The comparison of commercially available membranes shows that the FumaTech GmbH membranes are better - they have a higher efficiency and lower electric power consumption. Moreover, in case of the Tokuyama Corporation membranes, a considerable increase in solution temperature occurred when current density was high. After electrodialysis the acid solution went through crystallisation, which resulted in a product of chemical purity and granulometric composition meeting the criteria of food industry.


2011 ◽  
Vol 36 (11) ◽  
pp. 1521-1557 ◽  
Author(s):  
Guillaume Couture ◽  
Ali Alaaeddine ◽  
Frédéric Boschet ◽  
Bruno Ameduri

2021 ◽  
Author(s):  
Joshua Osuofa ◽  
Daniel Henn ◽  
Jinxiang Zhou ◽  
Anna Forsyth ◽  
Scott M. Husson

Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 311
Author(s):  
Muhammad Imran Khan ◽  
Majeda Khraisheh ◽  
Fares AlMomani

Recycling of acid from aqueous waste streams is crucial not only from the environmental point of view but also for maturing the feasible method (diffusion dialysis). Anion exchange membrane (AEM)–based diffusion dialysis process is one of the beneficial ways to recover acid from aqueous waste streams. In this article, the synthesis of a series of brominated poly (2, 6–dimethyl-1, 4–phenylene oxide) (BPPO)-based anion exchange membranes (AEMs) through quaternization with triphenylphosphine (TPP) were reported for acid recovery via diffusion dialysis process. The successful synthesis of the prepared membranes was confirmed by Fourier transform infrared (FTIR) spectroscopy. The as-synthesized anion exchange membranes represented water uptake (WR) of 44 to 66%, ion exchange capacity of (IEC) of 1.22 to 1.86 mmol/g, and linear swelling ratio (LSR) of 8 to 20%. They exhibited excellent thermal, mechanical, and acid stability. They showed homogeneous morphology. The acid recovery performance of the synthesized AEMs was investigated in a two compartment stack using simulated mixture of HCl and FeCl2 as feed solution at room temperature. For the synthesized anion exchange membranes TPP–43 to TPP–100, the diffusion dialysis coefficient of acid (UH+) was in the range of 6.7 to 26.3 (10−3 m/h) whereas separation factor (S) was in the range of 27 to 49 at 25 °C. Obtained results revealed that diffusion dialysis performance of the synthesized AEMs was higher than the commercial membrane DF–120B (UH+ = 0.004 m/h, S = 24.3) at room temperature. It showed that the prepared AEMs here could be excellent candidates for the diffusion dialysis process.


Sign in / Sign up

Export Citation Format

Share Document