Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite

2020 ◽  
Vol 240 ◽  
pp. 116650 ◽  
Author(s):  
Guang Han ◽  
Shuming Wen ◽  
Han Wang ◽  
Qicheng Feng
Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4066
Author(s):  
Xianyuan Fan ◽  
Hong Liu ◽  
Emmanuella Anang ◽  
Dajun Ren

The adsorption capacity of synthetic NaX zeolite for Pb2+, Cd2+, Cu2+ and Zn2+ in single and multi-component systems were investigated. The effects of electronegativity and hydration energy on the selective adsorption, as well as potential selective adsorption mechanism of the NaX zeolite for Pb2+, Cd2+, Cu2+ and Zn2+ were also discussed. The maximum adsorption capacity order of the heavy metals in the single system was Pb2+ > Cd2+ > Cu2+ > Zn2+, and this could be related to their hydration energy and electronegativity. The values of the separation factors (α) and affinity constant (KEL) in different binary systems indicated that Pb2+ was preferentially adsorbed, and Zn2+ presented the lowest affinity for NaX zeolite. The selective adsorption capacities of the metals were in the order, Pb2+ > Cd2+ ≈ Cu2+ > Zn2+. The trend for the selective adsorption of NaX zeolite in ternary and quaternary systems was consistent with that in the binary systems. Pb2+ and Cu2+ reduced the stability of the Si-O-Al bonds and the double six-membered rings in the NaX framework, due to the high electronegativity of Pb2+ and Cu2+ than that of Al3+. The selective adsorption mechanism of NaX zeolite for the high electronegative metal ions could mainly result from the negatively charged O in the Si-O-Al structure of the NaX zeolite, hence heavy metal ions with high electronegativity display a strong affinity for the electron cloud of the oxygen atoms in the Si-O-Al. This study could evaluate the application and efficiency of zeolite in separating and recovering certain metal ions from industrial wastewater.


2019 ◽  
Vol 9 (4) ◽  
pp. 431-441
Author(s):  
Shuqin Bai ◽  
Jue Han ◽  
Cong Du ◽  
Wei Ding

Abstract To remove silicic acid from aqueous solutions, a novel gallic acid-type resin (GA-type resin) was prepared by a grafting method. The effects of the adsorption capacity, pH and presence of NaCl, NaNO3, Na2SO4, and NaCO3 salts on the silicic acid removal were studied. The GA-type resin adsorbs monosilicic acid, silicate ions, and polymeric silicic acid. The adsorption capacity of 4.64–4.94 mg/g was achieved in a short adsorption time (Qm of 8.99 mg/g) and is 30–40 times larger than that of the OH-type resin. The silicic acid removal efficiency was almost unaffected by the pH and common anions when the common anion and silicic acid contents were similar, proving the GA-type resin exhibits an excellent performance for selective adsorption of silicic acid. The Temkin isotherm model can well describe the adsorption process, which is chemical adsorption, and indicates that the adsorption heat decreases with the increasing adsorption amount. The adsorption mechanism of silicic acid on the GA-type resin involves dehydration condensation reactions of the hydroxyl groups in silicic acid and gallic acid. The GA-type resin can be efficiently regenerated and reused after treatment with an HCl solution.


Nano Letters ◽  
2008 ◽  
Vol 8 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Youngmi Cho ◽  
Changwook Kim ◽  
Heesung Moon ◽  
Youngmin Choi ◽  
Sohee Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document