Prediction of long term filtration by coupled gel layer and pore transport model for salt removal using mixed matrix hollow fiber ultrafiltration membrane

2020 ◽  
Vol 250 ◽  
pp. 117213
Author(s):  
Mrinmoy Mondal ◽  
Saikat Bhattacharjee ◽  
Sirshendu De
2016 ◽  
Vol 134 (14) ◽  
Author(s):  
Masoud Rahbari-Sisakht ◽  
Ahmad Fauzi Ismail ◽  
Takeshi Matsuura ◽  
Daryoush Emadzadeh

2020 ◽  
Author(s):  
Muayad Al-shaeli ◽  
Stefan J. D. Smith ◽  
Shanxue Jiang ◽  
Huanting Wang ◽  
Kaisong Zhang ◽  
...  

<p>In this study, novel <a>mixed matrix polyethersulfone (PES) membranes</a> were synthesized by using two different kinds of metal organic frameworks (MOFs), namely UiO-66 and UiO-66-NH<sub>2</sub>. The composite membranes were characterised by SEM, EDX, FTIR, PXRD, water contact angle, porosity, pore size, etc. Membrane performance was investigated by water permeation flux, flux recovery ratio, fouling resistance and anti-fouling performance. The stability test was also conducted for the prepared mixed matrix membranes. A higher reduction in the water contact angle was observed after adding both MOFs to the PES and sulfonated PES membranes compared to pristine PES membranes. An enhancement in membrane performance was observed by embedding the MOF into PES membrane matrix, which may be attributed to the super-hydrophilic porous structure of UiO-66-NH<sub>2</sub> nanoparticles and hydrophilic structure of UiO-66 nanoparticles that could accelerate the exchange rate between solvent and non-solvent during the phase inversion process. By adding the MOFs into PES matrix, the flux recovery ratio was increased greatly (more than 99% for most mixed matrix membranes). The mixed matrix membranes showed higher resistance to protein adsorption compared to pristine PES membranes. After immersing the membranes in water for 3 months, 6 months and 12 months, both MOFs were stable and retained their structure. This study indicates that UiO-66 and UiO-66-NH<sub>2</sub> are great candidates for designing long-term stable mixed matrix membranes with higher anti-fouling performance.</p>


2020 ◽  
Author(s):  
O.E.M. ter Beek ◽  
M.K. van Gelder ◽  
C. Lokhorst ◽  
D.H.M. Hazenbrink ◽  
B.H. Lentferink ◽  
...  

Author(s):  
Macarena Valdés Salgado ◽  
Pamela Smith ◽  
Mariel Opazo ◽  
Nicolás Huneeus

Background: Several countries have documented the relationship between long-term exposure to air pollutants and epidemiological indicators of the COVID-19 pandemic, such as incidence and mortality. This study aims to explore the association between air pollutants, such as PM2.5 and PM10, and the incidence and mortality rates of COVID-19 during 2020. Methods: The incidence and mortality rates were estimated using the COVID-19 cases and deaths from the Chilean Ministry of Science, and the population size was obtained from the Chilean Institute of Statistics. A chemistry transport model was used to estimate the annual mean surface concentration of PM2.5 and PM10 in a period before the current pandemic. Negative binomial regressions were used to associate the epidemiological information with pollutant concentrations while considering demographic and social confounders. Results: For each microgram per cubic meter, the incidence rate increased by 1.3% regarding PM2.5 and 0.9% regarding PM10. There was no statistically significant relationship between the COVID-19 mortality rate and PM2.5 or PM10. Conclusions: The adjusted regression models showed that the COVID-19 incidence rate was significantly associated with chronic exposure to PM2.5 and PM10, even after adjusting for other variables.


Sign in / Sign up

Export Citation Format

Share Document