In-situ grown polyaniline catalytic interfacial layer improves water dissociation in bipolar membranes

Author(s):  
Geng Li ◽  
Muhammad A. Shehzad ◽  
Zijuan Ge ◽  
Huijuan Wang ◽  
Aqsa Yasmin ◽  
...  
2019 ◽  
Author(s):  
marijn blommaert ◽  
david vermaas ◽  
boaz izelaar ◽  
ben in't veen ◽  
wilson smith

Using electrochemical impedance spectroscopy (EIS), we observed the rate of water dissociation decrease in the presence of salt ions while also observing the diffusion and migration of these salt ions, showing a clear link between the peaks observed in EIS and ion crossover. In addition, we show how EIS can be used to in-situ monitor the stability and ageing of a BPM, revealing that degradation of the BPM is more prominent in extreme pH electrolyte pairs compared to non-extreme electrolyte pairs. The in-situ monitoring of the WDR and stability of a BPM are vital methods for adequate and consistent comparison of novel designs of BPM-based systems, where EIS allows for discriminating BPM characteristics from other components even during operation. <br>


2019 ◽  
Author(s):  
marijn blommaert ◽  
david vermaas ◽  
boaz izelaar ◽  
ben in't veen ◽  
wilson smith

Using electrochemical impedance spectroscopy (EIS), we observed the rate of water dissociation decrease in the presence of salt ions while also observing the diffusion and migration of these salt ions, showing a clear link between the peaks observed in EIS and ion crossover. In addition, we show how EIS can be used to in-situ monitor the stability and ageing of a BPM, revealing that degradation of the BPM is more prominent in extreme pH electrolyte pairs compared to non-extreme electrolyte pairs. The in-situ monitoring of the WDR and stability of a BPM are vital methods for adequate and consistent comparison of novel designs of BPM-based systems, where EIS allows for discriminating BPM characteristics from other components even during operation. <br>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Muhammad A. Shehzad ◽  
Aqsa Yasmin ◽  
Xiaolin Ge ◽  
Zijuan Ge ◽  
Kaiyu Zhang ◽  
...  

AbstractOptimal pH conditions for efficient artificial photosynthesis, hydrogen/oxygen evolution reactions, and photoreduction of carbon dioxide are now successfully achievable with catalytic bipolar membranes-integrated water dissociation and in-situ acid-base generations. However, inefficiency and instability are severe issues in state-of-the-art membranes, which need to urgently resolve with systematic membrane designs and innovative, inexpensive junctional catalysts. Here we show a shielding and in-situ formation strategy of fully-interconnected earth-abundant goethite Fe+3O(OH) catalyst, which lowers the activation energy barrier from 5.15 to 1.06 eV per HO − H bond and fabricates energy-efficient, cost-effective, and durable shielded catalytic bipolar membranes. Small water dissociation voltages at limiting current density (ULCD: 0.8 V) and 100 mA cm−2 (U100: 1.1 V), outstanding cyclic stability at 637 mA cm−2, long-time electro-stability, and fast acid-base generations (H2SO4: 3.9 ± 0.19 and NaOH: 4.4 ± 0.21 M m−2 min−1 at 100 mA cm−2) infer confident potential use of the novel bipolar membranes in emerging sustainable technologies.


2020 ◽  
Author(s):  
Hong Liu ◽  
Jian-Jun Wang ◽  
Li-Wen Jiang ◽  
Yuan Huang ◽  
Bing Bing Chen ◽  
...  

<p>Hydrogen production via alkaline water electrolysis is of significant interest. However, the additional water dissociation step makes the Volmer step a relatively more sluggish kinetics and consequently leads to a slower reaction rate than that in acidic solution. Herein, we demonstrate an effective strategy that Co(OH)<sub>2</sub> can promote the Volmer process by accelerating water dissociation and enhance the electrocatalytic performance of CoP toward alkaline hydrogen evolution reaction. The Co(OH)<sub>2</sub> nanoplates are electrochemically induced in-situ generated to form a nanotree-like structure with porous CoP nanowires, endowing the hybrid electrocatalyst with superior charge transportation, more exposed active sites, and enhanced reaction kinetics. This strategy may be extended to <a></a><a>other phosphides and chalcogenides </a>and provide insight into the design and fabrication of efficient alkaline HER catalysts.</p>


2019 ◽  
Vol 7 (18) ◽  
pp. 10924-10929 ◽  
Author(s):  
Shuwen Niu ◽  
Yanyan Fang ◽  
Jianbin Zhou ◽  
Jinyan Cai ◽  
Yipeng Zang ◽  
...  

The sluggish water dissociation kinetics of Ni3N is significantly accelerated by in situ interfacial engineering. Owing to the unique synergy between Ni3N and MoO2, Ni3N/MoO2 displays exceptional alkaline HER activity.


2015 ◽  
Vol 3 (16) ◽  
pp. 8246-8249 ◽  
Author(s):  
Yang Liu ◽  
Yinping Qin ◽  
Zhe Peng ◽  
Jingjing Zhou ◽  
Changjin Wan ◽  
...  

Hexamethylene diisocyanate can chemically react with the onium ion produced by the oxidation of propylene carbonate andin situgenerate a novel interfacial layer that is stable at high potential.


Sign in / Sign up

Export Citation Format

Share Document