scholarly journals Shielded goethite catalyst that enables fast water dissociation in bipolar membranes

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Muhammad A. Shehzad ◽  
Aqsa Yasmin ◽  
Xiaolin Ge ◽  
Zijuan Ge ◽  
Kaiyu Zhang ◽  
...  

AbstractOptimal pH conditions for efficient artificial photosynthesis, hydrogen/oxygen evolution reactions, and photoreduction of carbon dioxide are now successfully achievable with catalytic bipolar membranes-integrated water dissociation and in-situ acid-base generations. However, inefficiency and instability are severe issues in state-of-the-art membranes, which need to urgently resolve with systematic membrane designs and innovative, inexpensive junctional catalysts. Here we show a shielding and in-situ formation strategy of fully-interconnected earth-abundant goethite Fe+3O(OH) catalyst, which lowers the activation energy barrier from 5.15 to 1.06 eV per HO − H bond and fabricates energy-efficient, cost-effective, and durable shielded catalytic bipolar membranes. Small water dissociation voltages at limiting current density (ULCD: 0.8 V) and 100 mA cm−2 (U100: 1.1 V), outstanding cyclic stability at 637 mA cm−2, long-time electro-stability, and fast acid-base generations (H2SO4: 3.9 ± 0.19 and NaOH: 4.4 ± 0.21 M m−2 min−1 at 100 mA cm−2) infer confident potential use of the novel bipolar membranes in emerging sustainable technologies.

2019 ◽  
Author(s):  
marijn blommaert ◽  
david vermaas ◽  
boaz izelaar ◽  
ben in't veen ◽  
wilson smith

Using electrochemical impedance spectroscopy (EIS), we observed the rate of water dissociation decrease in the presence of salt ions while also observing the diffusion and migration of these salt ions, showing a clear link between the peaks observed in EIS and ion crossover. In addition, we show how EIS can be used to in-situ monitor the stability and ageing of a BPM, revealing that degradation of the BPM is more prominent in extreme pH electrolyte pairs compared to non-extreme electrolyte pairs. The in-situ monitoring of the WDR and stability of a BPM are vital methods for adequate and consistent comparison of novel designs of BPM-based systems, where EIS allows for discriminating BPM characteristics from other components even during operation. <br>


Author(s):  
Geng Li ◽  
Muhammad A. Shehzad ◽  
Zijuan Ge ◽  
Huijuan Wang ◽  
Aqsa Yasmin ◽  
...  

2022 ◽  
Vol 641 ◽  
pp. 119899
Author(s):  
Arturo Ortega ◽  
Luis F. Arenas ◽  
Joep J.H. Pijpers ◽  
Diana L. Vicencio ◽  
Juan C. Martínez ◽  
...  

Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 409
Author(s):  
Ragne Pärnamäe ◽  
Luigi Gurreri ◽  
Jan Post ◽  
Willem Johannes van Egmond ◽  
Andrea Culcasi ◽  
...  

The increasing share of renewables in electric grids nowadays causes a growing daily and seasonal mismatch between electricity generation and demand. In this regard, novel energy storage systems need to be developed, to allow large-scale storage of the excess electricity during low-demand time, and its distribution during peak demand time. Acid–base flow battery (ABFB) is a novel and environmentally friendly technology based on the reversible water dissociation by bipolar membranes, and it stores electricity in the form of chemical energy in acid and base solutions. The technology has already been demonstrated at the laboratory scale, and the experimental testing of the first 1 kW pilot plant is currently ongoing. This work aims to describe the current development and the perspectives of the ABFB technology. In particular, we discuss the main technical challenges related to the development of battery components (membranes, electrolyte solutions, and stack design), as well as simulated scenarios, to demonstrate the technology at the kW–MW scale. Finally, we present an economic analysis for a first 100 kW commercial unit and suggest future directions for further technology scale-up and commercial deployment.


1997 ◽  
Vol 125 (1) ◽  
pp. 123-142 ◽  
Author(s):  
H Strathmann ◽  
J.J Krol ◽  
H.-J Rapp ◽  
G Eigenberger

2019 ◽  
Author(s):  
marijn blommaert ◽  
david vermaas ◽  
boaz izelaar ◽  
ben in't veen ◽  
wilson smith

Using electrochemical impedance spectroscopy (EIS), we observed the rate of water dissociation decrease in the presence of salt ions while also observing the diffusion and migration of these salt ions, showing a clear link between the peaks observed in EIS and ion crossover. In addition, we show how EIS can be used to in-situ monitor the stability and ageing of a BPM, revealing that degradation of the BPM is more prominent in extreme pH electrolyte pairs compared to non-extreme electrolyte pairs. The in-situ monitoring of the WDR and stability of a BPM are vital methods for adequate and consistent comparison of novel designs of BPM-based systems, where EIS allows for discriminating BPM characteristics from other components even during operation. <br>


2017 ◽  
Vol 46 (10) ◽  
pp. 1459-1462 ◽  
Author(s):  
Do-Hyeong Kim ◽  
Moon-Sung Kang

2016 ◽  
Vol 9 (2) ◽  
pp. 187-197
Author(s):  
Sugihartono Sugihartono

Skinswaste at pre-tanning operations can be processed into food grade gelatin. The degradation of collagen using acid, base, or enzymes produced gelatin. Pickle skins is skins that acidified, the results of the final phase of the pre-tanning operations. The addition of salt on the skin makes the skins pickle not swollen, produced a wide space between collagen fibers and collagen can not be degraded. Thereby directly extract pickle skins or waste will not be obtained gelatin.This study discussed the processing of food gelatin type A pickle skins through the utilization of waste acid it contains. The discussion includes the components of animal skins, pre-tanning waste, acidification of skins, processing gelatin and gelatin from skins picklewaste and usefulness for the food industry. Salt hydrate collagen fibers in the skin pickle including waste can be separated by washing, to a certain extent still acidic skins waste. The remaining acid on the skins pickle waste can be utilized to hydrolyze collagen into gelatin. The resulting gelatin is gelatin type A, that can be used for food industry.ABSTRAKKulit limbah pada operasi pra-penyamakan dapat diolah menjadi gelatin pangan. Pemecahan kolagen menggunakan asam, basa, atau enzim dihasilkan gelatin. Kulit pikel merupakan kulit yang diasamkan, hasil dari tahap akhir operasi pra-penyamakan. Penambahan garam pada kulit pikel menjadikan kulit tidak bengkak, menghasilkan ruang lebar diantara serat kolagen dan menjadikan kolagen tidak dapat terdegradasi. Hal ini berarti ekstrak secara langsung kulit pikel atau limbahnya tidak akan diperoleh gelatin. Dalam kajian ini dibahas pengolahan gelatin pangan tipe A dari kulit pikel limbah melalui pendayagunaan asam yang dikandungnya. Bahasan mencakup komponen kulit hewan, limbah pra-penyamakan, pengasaman kulit, pengolahan gelatin, dan pengolahan gelatin dari kulit pikel limbah melalui pendayagunaan asam yang dikandungnya serta kegunaannya untuk industri pangan. Garam yang menghidrasi serat kolagen pada kulit pikel termasuk limbahnya dapat dipisahkan dengan cara pencucian, sampai batas tertentu kulit limbah masih bersifat asam. Asam yang tersisa pada kulit pikel limbah tersebut dapat didayagunakan untuk menghidrolisis kolagen menjadi gelatin. Gelatin yang dihasilkan adalah gelatin tipe A, dapat digunakan untuk keperluan industri pangan. Kata kunci : Kulit pikel limbah, gelatin, pengasaman, pangan.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 272
Author(s):  
Ayman M. Atta ◽  
Mohamed H. El-Newehy ◽  
Meera Moydeen Abdulhameed ◽  
Mohamed H. Wahby ◽  
Ahmed I. Hashem

The enhancement of both thermal and mechanical properties of epoxy materials using nanomaterials becomes a target in coating of the steel to protect it from aggressive environmental conditions for a long time, with reducing the cost. In this respect, the adhesion properties of the epoxy with the steel surfaces, and its proper superhyrophobicity to repel the seawater humidity, can be optimized via addition of green nanoparticles (NPs). In-situ modification of silver (Ag) and calcium carbonate (CaCO3) NPs with oleic acid (OA) was carried out during the formation of Ag−OA and CaCO3−OA, respectively. The epoxide oleic acid (EOA) was also used as capping for Ca−O3 NPs by in-situ method and epoxidation of Ag−OA NPs, too. The morphology, thermal stability, and the diameters of NPs, as well as their dispersion in organic solvent, were investigated. The effects of the prepared NPs on the exothermic curing of the epoxy resins in the presence of polyamines, flexibility or rigidity of epoxy coatings, wettability, and coatings durability in aggressive seawater environment were studied. The obtained results confirmed that the proper superhyrophobicity, coating adhesion, and thermal stability of the epoxy were improved after exposure to salt spray fog for 2000 h at 36 °C.


Sign in / Sign up

Export Citation Format

Share Document