De novo synthesis of amino-functionalized ZIF-8 nanoparticles: Enhanced Interfacial Compatibility and Pervaporation Performance in Mixed Matrix Membranes applying for Ethanol Dehydration

Author(s):  
Yun Xiong ◽  
Niyan Deng ◽  
Xiaoyu Wu ◽  
Quan Zhang ◽  
Shengpeng Liu ◽  
...  
2021 ◽  
Vol 119 (1) ◽  
pp. e2114964119
Author(s):  
Shanshan He ◽  
Bin Zhu ◽  
Xu Jiang ◽  
Gang Han ◽  
Songwei Li ◽  
...  

Mixed matrix membranes (MMMs) are one of the most promising solutions for energy-efficient gas separation. However, conventional MMM synthesis methods inevitably lead to poor filler–polymer interfacial compatibility, filler agglomeration, and limited loading. Herein, inspired by symbiotic relationships in nature, we designed a universal bottom-up method for in situ nanosized metal organic framework (MOF) assembly within polymer matrices. Consequently, our method eliminating the traditional postsynthetic step significantly enhanced MOF dispersion, interfacial compatibility, and loading to an unprecedented 67.2 wt % in synthesized MMMs. Utilizing experimental techniques and complementary density functional theory (DFT) simulation, we validated that these enhancements synergistically ameliorated CO2 solubility, which was significantly different from other works where MOF typically promoted gas diffusion. Our approach simultaneously improves CO2 permeability and selectivity, and superior carbon capture performance is maintained even during long-term tests; the mechanical strength is retained even with ultrahigh MOF loadings. This symbiosis-inspired de novo strategy can potentially pave the way for next-generation MMMs that can fully exploit the unique characteristics of both MOFs and matrices.


2019 ◽  
Vol 11 (34) ◽  
pp. 31257-31269 ◽  
Author(s):  
Qihui Qian ◽  
Albert X. Wu ◽  
Won Seok Chi ◽  
Patrick A. Asinger ◽  
Sharon Lin ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1329
Author(s):  
Maijun Li ◽  
Zhibo Zheng ◽  
Zhiguang Zhang ◽  
Nanwen Li ◽  
Siwei Liu ◽  
...  

To improve the interfacial compatibility of mixed matrix membranes (MMMs) for gas separation, microporous polyimide particle (AP) was designed, synthesized, and introduced into intrinsic microporous polyimide matrix (6FDA-Durene) to form “all polyimide” MMMs. The AP fillers showed the feature of thermal stability, similar density with polyimide matrix, high porosity, high fractional free volume, large microporous dimension, and interpenetrating network architecture. As expected, the excellent interfacial compatibility between 6FDA-Durene and AP without obvious agglomeration even at a high AP loading of 10 wt.% was observed. As a result, the CO2 permeability coefficient of MMM with AP loading as low as 5 wt.% reaches up to 1291.13 Barrer, which is 2.58 times that of the pristine 6FDA-Durene membrane without the significant sacrificing of ideal selectivity of CO2/CH4. The improvement of permeability properties is much better than that of the previously reported MMMs, where high filler content is required to achieve a high permeability increase but usually leads to significant agglomeration or phase separation of fillers. It is believed that the excellent interfacial compatibility between the PI fillers and the PI matrix induce the effective utilization of porosity and free volume of AP fillers during gas transport. Thus, a higher diffusion coefficient of MMMs has been observed than that of the pristine PI membrane. Furthermore, the rigid polyimide fillers also result in the excellent anti-plasticization ability for CO2. The MMMs with a 10 wt.% AP loading shows a CO2 plasticization pressure of 300 psi.


2016 ◽  
Vol 16 (4) ◽  
pp. 4141-4146 ◽  
Author(s):  
Kevin C.-W Wu ◽  
Chao-Hsiang Kang ◽  
Yi-Feng Lin ◽  
Kuo-Lun Tung ◽  
Yu-Heng Deng ◽  
...  

Prussian blue (PB) nanoparticles, one of many cyano-bridged coordination polymers, are successfully incorporated into chitosan (CS) polymer to prepare PB/CS mixed matrix membranes (MMMs). The PB nanoparticles are uniformly distributed in the MMMs without the collapse of the original PB structure. As-prepared PB/CS MMMs are used for ethanol dehydration at 25 °C in the pervaporation process. The effect of loading PB in CS matrix on pervaporation performance is carefully investigated. The PB/CS membrane with 30 wt% PB loading shows the best performance with a permeate flux of 614 g·m−2 ·h−1 and a separation factor of 1472. The pervaporation using our PB/CS membranes exhibits outstanding performance in comparison with the previously reported CS-based membranes and MMMs. Furthermore, the addition of PB allows PB/CS MMMs to be tolerant of acidic environment. The present work demonstrates good pervaporation performance of PB/CS MMMs for the separation of an ethanol/water (90:10 in wt%) solution. Our new system provides an opportunity for dehydration of bioethanol in the future.


2019 ◽  
Vol 221 ◽  
pp. 325-330 ◽  
Author(s):  
Yi-Feng Lin ◽  
Jin-Chieh Ho ◽  
Kun-Yi Andrew Lin ◽  
Kuo-Lun Tung ◽  
Tsair-Wang Chung ◽  
...  

2017 ◽  
Vol 29 (32) ◽  
pp. 1606999 ◽  
Author(s):  
Long Xiang ◽  
Luqian Sheng ◽  
Chongqing Wang ◽  
Lixiong Zhang ◽  
Yichang Pan ◽  
...  

2019 ◽  
Vol 35 (5) ◽  
pp. 565-590 ◽  
Author(s):  
Roberto Castro-Muñoz ◽  
Francesco Galiano ◽  
Vlastimil Fíla ◽  
Enrico Drioli ◽  
Alberto Figoli

Abstract Over the last few decades, different polymers have been employed as materials in membrane preparation for pervaporation (PV) application, which are currently used in the preparation of mixed matrix membranes (MMMs) for ethanol recovery and ethanol dehydration. The ethanol-water and water-ethanol mixtures are, in fact, the most studied PV systems since the bioethanol production is strongly increasing its demand. The present review focuses on the current state of the art and future trends on ethanol purification by using MMMs in PV. A particular emphasis will, therefore, be placed on the enhancement of specific components transport and selectivity through the incorporation of inorganic materials into polymeric membranes, mentioning key principles on suitable filler selection for a synergistic effect toward such separations. In addition, the following topics will be discussed: (i) the generalities of PV, including the theoretical aspects and its role in separation; (ii) a general overview of the methodologies for the preparation of MMMs; and (iii) the most recent findings based on MMMs for both ethanol recovery and ethanol dehydration for better evolution in the field. From the last decade of literature inputs, the poly(vinyl alcohol) has been the most used polymeric matrix targeting ethanol dehydration, while the zeolites have been the most used embedded materials. Today, the latest developments on MMM preparation declare that the future efforts will be directed to the chemical modification of polymeric materials as well as the incorporation of novel fillers or enhancing the existing ones through chemical modification.


2020 ◽  
Author(s):  
Muayad Al-shaeli ◽  
Stefan J. D. Smith ◽  
Shanxue Jiang ◽  
Huanting Wang ◽  
Kaisong Zhang ◽  
...  

<p>In this study, novel <a>mixed matrix polyethersulfone (PES) membranes</a> were synthesized by using two different kinds of metal organic frameworks (MOFs), namely UiO-66 and UiO-66-NH<sub>2</sub>. The composite membranes were characterised by SEM, EDX, FTIR, PXRD, water contact angle, porosity, pore size, etc. Membrane performance was investigated by water permeation flux, flux recovery ratio, fouling resistance and anti-fouling performance. The stability test was also conducted for the prepared mixed matrix membranes. A higher reduction in the water contact angle was observed after adding both MOFs to the PES and sulfonated PES membranes compared to pristine PES membranes. An enhancement in membrane performance was observed by embedding the MOF into PES membrane matrix, which may be attributed to the super-hydrophilic porous structure of UiO-66-NH<sub>2</sub> nanoparticles and hydrophilic structure of UiO-66 nanoparticles that could accelerate the exchange rate between solvent and non-solvent during the phase inversion process. By adding the MOFs into PES matrix, the flux recovery ratio was increased greatly (more than 99% for most mixed matrix membranes). The mixed matrix membranes showed higher resistance to protein adsorption compared to pristine PES membranes. After immersing the membranes in water for 3 months, 6 months and 12 months, both MOFs were stable and retained their structure. This study indicates that UiO-66 and UiO-66-NH<sub>2</sub> are great candidates for designing long-term stable mixed matrix membranes with higher anti-fouling performance.</p>


Sign in / Sign up

Export Citation Format

Share Document