scholarly journals The deformation and mechanisms of the Zhangbaling tectonic belt during Indosinian to early Yanshanian: Implications for the relationship with the Tan-Lu Fault Zone

Author(s):  
Qi Hou ◽  
Xiaoyong Yang ◽  
Mingjin Hou
2018 ◽  
Vol 123 (9) ◽  
pp. 7661-7687 ◽  
Author(s):  
Marieke Rempe ◽  
Thomas M. Mitchell ◽  
Jörg Renner ◽  
Steven A. F. Smith ◽  
Andrea Bistacchi ◽  
...  

2017 ◽  
Vol 12 (5) ◽  
pp. 899-915 ◽  
Author(s):  
Shohei Naito ◽  
Ken Xiansheng Hao ◽  
Shigeki Senna ◽  
Takuma Saeki ◽  
Hiromitsu Nakamura ◽  
...  

In the 2016 Kumamoto earthquake, the Futagawa fault zone and the Hinagu fault zone were active in some sections, causing severe damage in neighboring areas along the faults. We conducted a detailed investigation of the surface earthquake fault, building damage, and site amplification of shallow ground within about 1 km of the neighboring areas of the fault. The focus was mainly on Kawayou district, Minamiaso village and Miyazono district, Mashiki town, and locations that suffered particularly severe building damage. We explored the relationship between local strong motion and building damage caused in areas that were in the immediate vicinity of the active fault.


2016 ◽  
Vol 59 (5) ◽  
pp. 1025-1040 ◽  
Author(s):  
QiYun Lei ◽  
PeiZhen Zhang ◽  
WenJun Zheng ◽  
ChiZhang Chai ◽  
WeiTao Wang ◽  
...  

2013 ◽  
Vol 312 ◽  
pp. 844-848 ◽  
Author(s):  
Yun Tao Zhang ◽  
Bo Yu ◽  
Pei Kun Peng

The metal organic series in Southern Jiangxi is the series of W & U deposits closely related with the Late Yanshanian granite within the South China fold system and the uplift belt. The host rock of W mineralization is fine or medium-fine grained biotitic granite of Early Yanshanian period, subordinated with Late Yanshanian granite The time initial of uranium concentration span from 103-70Ma. Vertically the mineralization zone of tungsten is above that of uranium, however horizontally it is in the center and that of uranium outwards. To the west of Wuyi tectonic belt, distinctly the uranium mineralized posterior to the tungsten, however to the east of Wuyi tectonic belt, the W-Mo-bearing grease negation quartz vein let remarkably cut off the U-bearing silicified fractured zone.


2020 ◽  
Author(s):  
Yangwen Pei

<p>Understanding the detailed fault architecture of reverse faulting is not only critical for revealing the processes involved in fold-thrust belts as well as predicting the relationship between folds and faults, the distribution of strain, and sub-seismic faulting deformation, but also important for understanding fault related compartmentalisation and fluid flow behaviour both along and/or across thrust fault zones. The Lenghu5 fold-thrust belt, provides an exceptionally well-exposed outcrop example of a reverse fault-related fold. Detailed stratigraphic logging coupled with high-resolution cross-sections provides a unique insight into the 3D geometry of a thrust fault at both basin and outcrop scale.</p><p>In this study we observed 85 - 90% of the estimated throw is accommodated on the main fault zone (i.e., the Lenghu5 thrust fault), which has sufficient throw to be imaged on a seismic profile, while 15-20% of the throw is accommodated on smaller scale folds and faults that are beyond seismic resolution. The Lenghu5 thrust fault, a seismically resolvable fault with up to ~800m of throw, exhibits a large variation of fault architecture and strain distribution along the fault zone. As meso-scale (1-100 m) structural features are normally beyond the seismic resolution, high-resolution outcrop in-situ mapping (5-10 cm resolution) was employed to study the deformation features of the Lenghu5 thrust fault zone. The excellent exposure of outcrops enables detailed investigation of its fault zone architecture. Multiple structural domains with different levels of strain were observed and are associated with the fault throw distribution across the fault. Based on previously proposed models and high-resolution outcrop mapping, an updated fault zone model was constructed to characterize the structural features and evolution of the Lenghu5 thrust fault.</p><p>The possible parameters that impact fault architecture and strain distribution, including fault throw, bed thickness, lithology and mechanical heterogeneity were evaluated. Fault throw distributions and linkages control the strain distribution across a thrust fault zone, with local folding processes contributing important elements in the Lenghu5 thrust fault especially where more incompetent beds dominate the stratigraphy. Mechanical heterogeneity, induced by different layer stacking patterns, controls the details of the fault architecture in the thrust zone. The variations in bed thicknesses and mechanical property contrasts are likely to control the initial fault dips and fault/fracture density. Large fault throws are associated with wide strain accommodation and damage zones, although the relationship between the development and width of the fault zone with the throw accumulation remains to be assessed.</p><p>By presenting the high resolution mapping of fault architecture this study provides an insight into the sub-seismic fault zone geometry and strain distributions possible in thrust faults and reviews their application to assessing fault zone behaviour.</p>


Author(s):  
Z. Jing ◽  
F. Bihong ◽  
S. Pilong ◽  
G. Qiang

The western Mongolia is a seismically active intracontinental region, with ongoing tectonic deformation and widespread seismicity related to the far-field effects of India-Eurasia collision. During the 20th century, four earthquakes with the magnitude larger than 8 occurred in the western Mongolia and its surrounding regions, providing a unique opportunity to study the geodynamics of intracontinental tectonic deformations. The 1957 magnitude 8.3 Gobi-Altai earthquake is one of the largest seismic events. The deformation pattern of rupture zone associated with this earthquake is complex, involving left-lateral strike-slip and reverse dip-slip faulting on several distinct geological structures in a 264&amp;thinsp;×&amp;thinsp;40&amp;thinsp;km wide zone. To understand the relationship between the observed postseismic surface deformation and the rheological structure of the upper lithosphere, Interferometric Synthetic Aperture Radar (InSAR) data are used to study the 1957 earthquake. Then we developed a postseismic model in a spherical, radially layered elastic-viscoelastic Earth based on InSAR results, and further analysed the dominant contribution to the surface deformation. This work is important for understanding not only the regional tectonics, but also the structure and dynamics of the lithosphere. <br><br> SAR data were acquired from the ERS1/2 and Envisat from 1996 to 2010. Using the Repeat Orbit Interferometry Package (ROI_PAC), 124 postseismic interferograms are produced on four adjacent tracks. By stacking these interferograms, the maximum InSAR line-of-sight deformation rate along the Gobi-Altai fault zone is obtained. The main results are as follows: (1) The maximum InSAR line-of-sight deformation velocity along this large fault zone is about 6&amp;thinsp;mm/yr; (2) The modelled surface deformation suggests that the viscoelastic relaxation is the most reasonable mechanism to explain the observed surface motion; (3) The optimal model cover the Gobi-Altai seismogenic thickness is 10&amp;thinsp;km; (4) The lower bound of Maxwell viscosity of lower crust and upper mantle is approximately 9&amp;thinsp;×&amp;thinsp;10<sup>19</sup>&amp;thinsp;Pa&amp;thinsp;s, and the Maxwell relaxation time corresponding to this viscosity is 95.13 years.


Sign in / Sign up

Export Citation Format

Share Document