A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels

2021 ◽  
Vol 47 ◽  
pp. 101416
Author(s):  
Anh Tuan Hoang ◽  
Sandro Nižetić ◽  
Hwai Chyuan Ong ◽  
Wieslaw Tarelko ◽  
Van Viet Pham ◽  
...  
2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Subrata Bhowmik ◽  
Rajsekhar Panua ◽  
Durbadal Debroy ◽  
Abhishek Paul

The present study explores the impact of ethanol on the performance and emission characteristics of a single cylinder indirect injection (IDI) Diesel engine fueled with Diesel–kerosene blends. Five percent ethanol is added to Diesel–kerosene blends in volumetric proportion. Ethanol addition to Diesel–kerosene blends significantly improved the brake thermal efficiency (BTE), brake specific energy consumption (BSEC), oxides of nitrogen (NOx), total hydrocarbon (THC), and carbon monoxide (CO) emission of the engine. Based on engine experimental data, an artificial neural network (ANN) model is formulated to accurately map the input (load, kerosene volume percentage, ethanol volume percentage) and output (BTE, BSEC, NOx, THC, CO) relationships. A (3-6-5) topology with Levenberg–Marquardt feed-forward back propagation (trainlm) is found to be optimal network than other training algorithms for predicting input and output relationship with acceptable error. The mean square error (MSE) of 0.000225, mean absolute percentage error (MAPE) of 2.88%, and regression coefficient (R) of 0.99893 are obtained from the developed model. The study also attempts to make clear the application of fuzzy-based analysis to optimize the network topology of ANN model.


2017 ◽  
Vol 26 (2) ◽  
pp. 74 ◽  
Author(s):  
Hasan Aydogan

The changes in the performance, emission and combustion characteristics of bioethanol-safflower biodiesel and diesel fuel blends used in a common rail diesel engine were investigated in this experimental study. E20B20D60 (20% bioethanol, 20% biodiesel, 60% diesel fuel by volume), E30B20D50, E50B20D30 and diesel fuel (D) were used as fuel. Engine power, torque, brake specific fuel consumption, NOx and cylinder inner pressure values were measured during the experiment. With the help of the obtained experimental data, an artificial neural network was created in MATLAB 2013a software by using back-propagation algorithm. Using the experimental data, predictions were made in the created artificial neural network. As a result of the study, the correlation coefficient was found as 0.98. In conclusion, it was seen that artificial neural networks approach could be used for predicting performance and emission values in internal combustion engines.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 584
Author(s):  
Vinay Arora ◽  
Sunil Kumar Mahla ◽  
Rohan Singh Leekha ◽  
Amit Dhir ◽  
Kyungroul Lee ◽  
...  

Biogas is a significant renewable fuel derived by sources of biological origin. One of today’s research issues is the effect of biofuels on engine efficiency. The experiments on the engine are complicated, time consuming and expensive. Furthermore, the evaluation cannot be carried out beyond the permissible limit. The purpose of this research is to build an artificial neural network successfully for dual fuel diesel engine with a view to overcoming experimental difficulties. Authors used engine load, bio-gas flow rate and n-butanol concentration as input parameters to forecast target variables in this analysis, i.e., smoke, brake thermal efficiency (BTE), carbon monoxide (CO), hydrocarbon (HC), nitrous-oxide (NOx). Estimated values and results of experiments were compared. The error analysis showed that the built model has quite accurately predicted the experimental results. This has been described by the value of Coefficient of determination (R2), which varies between 0.8493 and 0.9863 with the value of normalized mean square error (NMSE) between 0.0071 and 0.1182. The potency of the Nash-Sutcliffe coefficient of efficiency (NSCE) ranges from 0.821 to 0.8898 for BTE, HC, NOx and Smoke. This research has effectively emulated the on-board efficiency, emission, and combustion features of a dual-fuel biogas diesel engine taking the Swish activation mechanism in artificial neural network (ANN) model.


Sign in / Sign up

Export Citation Format

Share Document