Construct High-Precise SERS Sensor by Hierarchical Superhydrophobic Si/Cu(OH)2 Platform for Ultratrace Detection of Food Contaminants

2021 ◽  
pp. 131056
Author(s):  
Maosen Yang ◽  
Chenxi Wang ◽  
Yisheng Wei ◽  
Chundong Liu ◽  
Fengcai Lei ◽  
...  
2019 ◽  
Vol 26 (19) ◽  
pp. 3471-3482 ◽  
Author(s):  
Agostino Di Ciaula ◽  
Piero Portincasa

The obesity epidemic is spreading worldwide without reversal trend and despite specific policies oriented to dietary habits and lifestyle, which seem to have modest effects. Genetic factors only partly explain the rise, whereas environmental factors seem to play a key role, mainly by gene-environment interactions through epigenetic mechanisms. A number of animal and human studies point to maternal diet, intestinal microbiota and chemicals introduced as contaminants with food, all factors able to increase the risk of obesity. Widely diffused toxics (mainly BPA, phthalates, pesticides) are able to promote obesity in children and adults, mainly by acting on the differentiation pathway linking multipotent stromal stem cell to mature adipocyte, modulating epigenetic factors and influencing a series of mechanisms finally leading to altered dietary habits, increased adipocyte formation and fat storage. Furthermore, the adipose tissue is an important target for several chemicals (mainly POPs) which represent a threat to metabolic health. In conclusion, besides excessive individual energy intake and inadequate lifestyle, other broadly diffused and modifiable factors (mainly ingestion of toxic chemicals with food) seem to have a critical role in the rapid epidemiological growing of obesity, also considering trans-generational transmission of risk and later development of obesity due to exposure during early life. Further studies are needed, to better assess interactions between cumulative effects of toxic food contaminants and modification of diet and lifestyle, and to verify the efficacy of primary prevention strategies acting on all these factors and potentially able to reverse the continuous rising of the obesity epidemic.


Toxins ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 159 ◽  
Author(s):  
Imourana Alassane-Kpembi ◽  
Philippe Pinton ◽  
Isabelle Oswald

The gastrointestinal tract is the first physiological barrier against food contaminants, as well as the first target for these toxicants [...]


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3769
Author(s):  
Noelia Pallarés ◽  
Albert Sebastià ◽  
Vicente Martínez-Lucas ◽  
Mario González-Angulo ◽  
Francisco J. Barba ◽  
...  

High-pressure processing (HPP) has emerged over the last 2 decades as a good alternative to traditional thermal treatment for food safety and shelf-life extension, supplying foods with similar characteristics to those of fresh products. Currently, HPP has also been proposed as a useful tool to reduce food contaminants, such as pesticides and mycotoxins. The aim of the present study is to explore the effect of HPP technology at 600 MPa during 5 min at room temperature on alternariol (AOH) and aflatoxin B1 (AFB1) mycotoxins reduction in different juice models. The effect of HPP has also been compared with a thermal treatment performed at 90 °C during 21 s. For this, different juice models, orange juice/milk beverage, strawberry juice/milk beverage and grape juice, were prepared and spiked individually with AOH and AFB1 at a concentration of 100 µg/L. After HPP and thermal treatments, mycotoxins were extracted from treated samples and controls by dispersive liquid–liquid microextraction (DLLME) and determined by HPLC-MS/MS-IT. The results obtained revealed reduction percentages up to 24% for AFB1 and 37% for AOH. Comparing between different juice models, significant differences were observed for AFB1 residues in orange juice/milk versus strawberry juice/milk beverages after HPP treatment. Moreover, HPP resulted as more effective than thermal treatment, being an effective tool to incorporate to food industry in order to reach mycotoxins reductions.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2449
Author(s):  
Lauren Girard ◽  
Kithsiri Herath ◽  
Hernando Escobar ◽  
Renate Reimschuessel ◽  
Olgica Ceric ◽  
...  

The U.S. Food and Drug Administration’s (FDA′s) Center for Veterinary Medicine (CVM) has been investigating reports of pets becoming ill after consuming jerky pet treats since 2007. Renal failure accounted for 30% of reported cases. Jerky pet treats contain glycerin, which can be made from vegetable oil or as a byproduct of biodiesel production. Glycidyl esters (GEs) and 3-monochloropropanediol esters (3-MCPDEs) are food contaminants that can form in glycerin during the refining process. 3-MCPDEs and GEs pose food safety concerns, as they can release free 3-MCPD and glycidol in vivo. Evidence from studies in animals shows that 3-MCPDEs are potential toxins with kidneys as their main target. As renal failure accounted for 30% of reported pet illnesses after the consumption of jerky pet treats containing glycerin, there is a need to develop a screening method to detect 3-MCPDEs and GEs in glycerin. We describe the development of an ultra-high-pressure liquid chromatography/quadrupole time-of-flight (UHPLC/Q-TOF) method for screening glycerin for MCPDEs and GEs. Glycerin was extracted and directly analyzed without a solid-phase extraction procedure. An exact mass database, developed in-house, of MCPDEs and GEs formed with common fatty acids was used in the screening.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4607
Author(s):  
Dounia Elfadil ◽  
Abderrahman Lamaoui ◽  
Flavio Della Pelle ◽  
Aziz Amine ◽  
Dario Compagnone

Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP-based electrochemical sensing are discussed as well as the relevant applications of MIPs used in sample preparation and then coupled to electrochemical analysis. Future perspectives and challenges have been eventually given.


2009 ◽  
Vol 189 ◽  
pp. S41
Author(s):  
Jan Alexander ◽  
Jan Erik Paulsen ◽  
Trine Husøy ◽  
Camilla Rønningborg

Sign in / Sign up

Export Citation Format

Share Document