scholarly journals Soil acidification modifies soil depth-microbiome relationships in a no-till wheat cropping system

2020 ◽  
Vol 149 ◽  
pp. 107939
Author(s):  
Daniel C. Schlatter ◽  
Kendall Kahl ◽  
Bryan Carlson ◽  
David R. Huggins ◽  
Timothy Paulitz
1993 ◽  
Vol 28 (3-5) ◽  
pp. 691-700 ◽  
Author(s):  
J. P. Craig ◽  
R. R. Weil

In December, 1987, the states in the Chesapeake Bay region, along with the federal government, signed an agreement which called for a 40% reduction in nitrogen and phosphorus loadings to the Bay by the year 2000. To accomplish this goal, major reductions in nutrient loadings associated with agricultural management practices were deemed necessary. The objective of this study was to determine if reducing fertilizer inputs to the NT system would result in a reduction in nitrogen contamination of groundwater. In this study, groundwater, soil, and percolate samples were collected from two cropping systems. The first system was a conventional no-till (NT) grain production system with a two-year rotation of corn/winter wheat/double crop soybean. The second system, denoted low-input sustainable agriculture (LISA), produced the same crops using a winter legume and relay-cropped soybeans into standing wheat to reduce nitrogen and herbicide inputs. Nitrate-nitrogen concentrations in groundwater were significantly lower under the LISA system. Over 80% of the NT groundwater samples had NO3-N concentrations greater than 10 mgl-1, compared to only 4% for the LISA cropping system. Significantly lower soil mineral N to a depth of 180 cm was also observed. The NT soil had nearly twice as much mineral N present in the 90-180 cm portion than the LISA cropping system.


2003 ◽  
Vol 28 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Álvaro M. R. Almeida ◽  
Lilian Amorim ◽  
Armando Bergamin Filho ◽  
Eleno Torres ◽  
José R. B. Farias ◽  
...  

The increase in incidence of charcoal rot caused by Macrophomina phaseolina on soybeans (Glycine max) was followed four seasons in conventional and no-till cropping systems. In the 1997/98 and 2000/01 seasons, total precipitation between sowing and harvest reached 876.3 and 846.9 mm, respectively. For these seasons, disease incidence did not differ significantly between the no-till and conventional systems. In 1998/99 and 1999/00 precipitation totaled 689.9 and 478.3 mm, respectively. In 1998/99, in the no-till system, the disease incidence was 43.7% and 53.1% in the conventional system. In 1999/00 the final incidence was 68.7% and 81.2% for the no-till and conventional systems, respectively. For these two seasons, precipitation was lower than that required for soybean crops (840 mm), and the averages of disease incidence were significantly higher in the conventional system. The concentration of microsclerotia in soil samples was higher in samples collected in conventional system at 0 - 10 cm depth. However, analysis of microsclerotia in roots showed that in years with adequate rain no difference was detected. In dry years, however, roots from plants developed under the conventional system had significantly more microsclerotia. Because of the wide host range of M. phaseolina and the long survival times of the microsclerotia, crop rotation would probably have little benefit in reducing charcoal rot. Under these study conditions it may be a better alternative to suppress charcoal rot by using the no-till cropping system to conserve soil moisture and reduce disease progress.


2018 ◽  
Vol 98 (6) ◽  
pp. 1331-1341 ◽  
Author(s):  
W.E. May ◽  
M.P. Dawson ◽  
C.L. Lyons

In the past, most sunflower research was conducted in tilled cropping systems and was based on wide row configurations established using precision planters. Little agronomic information is available for the no-till systems predominant in Saskatchewan, where crops are typically seeded in narrow rows using an air drill. Two studies were conducted in Saskatchewan to determine the optimum seeding and nitrogen (N) rates for short-season sunflowers in a no-till cropping system. The N rate study used 5 N rates (10, 30, 50, 70, and 90 kg N ha−1) with the hybrid 63A21. The seeding rate study used 7 seeding rates (37 000, 49 000, 61 000, 74 000, 86 000, 98 000, and 111 000 seeds ha−1) with two cultivars, AC Sierra (open pollinated) and 63A21 (hybrid). There was a linear yield increase as the N rate increased from 10 to 90 kg N ha−1. Based on the N rates tested in this study and current N fertilizer costs below $1 kg−1, sunflower yields and gross returns were most favorable at 90 kg N ha−1. Future N response research with a wider range of N rates is warranted to best determine the optimum N rate. The optimum seeding rate was between 98 000 and 111 000 seeds ha−1 for AC Sierra and between 74 000 and 86 000 seeds ha−1 for 63A21. The optimum plant density, approximately 70 000 to 75 000 plants ha−1, was similar for both cultivars. These results are higher than the current recommended seeding rates for wide-row precision planting systems in areas with a longer growing season.


2020 ◽  
Vol 71 (3) ◽  
pp. 268
Author(s):  
Gulshan Mahajan ◽  
Rajandeep Singh ◽  
Bhagirath S. Chauhan

Brassica tournefortii Gouan. (wild turnip, WT) has become a problematic weed in the no-till production systems of the northern grains region of Australia. Experiments were undertaken using different biotypes of B. tournefortii to examine its phenology, emergence and seedbank persistence. Biotypes were obtained from paddocks of barley (Hordeum vulgare L.) (WT1 and WT9) and chickpea (Cicer arietinum L.) (WT1/17 and WT2/17). Fresh seeds initially had high dormancy rates and persisted for a short period on the surface. Seedbank persistence increased with burial depth, with 39% of seeds remaining for WT1 and 5% for WT9 after 30 months at 2 cm depth. Persistence of buried seeds varied across biotypes; WT1/17 seedlings also emerged in the second growing season from 2 cm depth. Compared with buried seeds, seedlings readily emerged from the surface (in March–June following increased rainfall) within 6 months of planting. Emergence was greatest on the surface and varied between biotypes and tillage systems; the highest rate recorded was ~14%. Multiple cohorts were produced between February and October. No-till systems produced higher emergence rates than conventional tillage systems. Seedlings of B. tournefortii did not emerge from 5 cm soil depth; therefore, diligent tillage practices without seedbank replenishment could rapidly reduce the presence of this weed. A soil-moisture study revealed that at 25% of water-holding capacity, B. tournefortii tended to produce sufficient seeds for reinfestation in the field. Brassica tournefortii is a cross-pollinated species, and its wider emergence time and capacity to produce enough seeds in a dry environment enable it to become widespread in Australia. Early cohorts (March) tended to have vigorous growth and high reproduction potential. This study found B. tournefortii to be a poor competitor of wheat (Triticum aestivum L.), having greater capacity to compete with the slow-growing crop chickpea. Therefore, control of early-season cohorts and use of rotations with a more vigorous crop such as wheat may reduce the seedbank. The information gained in this study will be important in developing better understanding of seed ecology of B. tournefortii for the purpose of developing integrated management strategies.


2017 ◽  
Vol 5 (4) ◽  
pp. 97
Author(s):  
Badiori Ouattara ◽  
Idriss Sermé ◽  
Korodjouma Ouattara ◽  
Michel P Sédogo ◽  
Hassan Bismark Nacro

Labile pools of soil organic matter (SOM), including soil sugars, are important to the formation and stabilization of soil aggregates and to microbial activity and nutrient cycling. The effects of cropping systems at farm level in tropical areas on SOM labile pool dynamics have not been adequately studied and the results are sparse and inconsistent. The objective of this study was to determine the effects of soil management intensity on soil sugar monomers derived from plant debris or microbial activity in cotton (Gossypium herbaceum)-based cropping systems of western Burkina Faso. Thirty-three (33) plots were sampled at 0-15 cm soil depth considering field-fallow successions and tillage intensity. Two pentose (arabinose, xylose) and four hexose (glucose, galactose, mannose, glucosamine) monomers accounted for 2 to 18% of soil organic carbon (SOC) content. Total sugar content was significantly less with tillage, especially for the hexose monomeric sugars glucose and mannose, the latter of microbial origin. Soil mannose was 63 and 80% less after 10 years of cultivation, without and with annual ploughing respectively, compared with fallow conditions. Soil monosaccharide content was rapidly restored with fallow and soon approached the equilibrium level observed under old fallow lands. Therefore, the soil monosaccharides, in particular galactose and mannose from microbial synthesis are early indicators of changes in SOC.


Soil Research ◽  
2008 ◽  
Vol 46 (1) ◽  
pp. 17 ◽  
Author(s):  
F. C. B. Vieira ◽  
C. Bayer ◽  
J. Mielniczuk ◽  
J. Zanatta ◽  
C. A. Bissani

Cropping systems and N fertilisation affect soil acidification mainly due to the removal of alkaline plant material from the field and nitrate leaching. The study evaluated the acidification of a subtropical soil under no till cropping systems with different C and N addition rates for 19 years. The contributions of leguminous and non-leguminous crops (fallow/maize, black oat/maize, black oat + vetch/maize, black oat + vetch/maize + cowpea, lablab + maize, pigeon pea + maize, and digitaria) and mineral N fertiliser (0 and 180 kg N/ha.year as urea) to total acidification were estimated. Cropping systems and N fertilisation significantly affected soil pH, which ranged from 4.3 to 5.1. The presence of leguminous species and mineral N promoted greater decreases in soil pH and net soil acidification, which resulted in increases in exchangeable Al content and Al saturation. Black oat + vetch/maize with N fertilisation promoted the highest soil net acidification rate (2.65 kmol H+/ha.year), while digitaria had the lowest (1.07 kmol H+/ha.year). Leguminous species and N fertilisation increased soil acidification through changes in the C cycle associated with the removal of alkaline plant material by grains. Leguminous-based cropping systems promoted higher maize yields than those comprising essentially gramineous species, indicating an opportunity for a reduction in N fertiliser rates. With N application, however, maize yield did not differ among cropping systems, despite differences in soil pH and exchangeable Al.


1997 ◽  
Vol 87 (3) ◽  
pp. 242-249 ◽  
Author(s):  
Jean B. Ristaino ◽  
Gregory Parra ◽  
C. Lee Campbell

Four mechanisms of dispersal of propagules of Phytophthora capsici were investigated through modifications in cultural practices and fungicide applications in field plots of bell pepper (Capsicum annuum). Dispersal of soil inoculum was suppressed, and final incidence of disease was 2.5 to 43% when stubble from a fall-sown, no-till, wheat cover crop was present. Final disease incidence was 71 to 72% and pathogen spread occurred within and across rows when all dispersal mechanisms were operative in plots of pepper planted into bare soil. Final disease incidence was 42 to 78% with black plastic mulch when a sporulating pepper fruit placed on the surface served as the source of initial inoculum. The fungicide metalaxyl applied in the irrigation system did not suppress within-row spread of surface inoculum from a sporulating fruit on plastic, but did limit across-row spread; final disease incidence in metalaxyl-treated plots was 11.5 to 14%. Pathogen dispersal mechanisms were modified most dramatically by the no-till cropping system. Thus, simple changes in cultural practices can have dramatic effects on the development of Phytophthora epidemics. Ecologically based disease management strategies have the potential to reduce our reliance on agrichemicals in this and similar pathosystems.


2001 ◽  
Vol 137 (2) ◽  
pp. 195-203 ◽  
Author(s):  
T. R. RUPA ◽  
S. SRIVASTAVA ◽  
A. SWARUP ◽  
D. SINGH

The effect of 27 years of continuous cropping, fertilization and manuring on potassium (K) supplying capacity of a Typic Ustochrept soil profile from Delhi, India under a maize–wheat–cowpea (fodder) cropping system was investigated by employing the quantity/intensity (Q/I) approach. The predominant mineral suite of the <2 μm clay fraction was illite. The values of equilibrium activity ratio of K in solution in equilibrium with the soil (ARKE), labile pools of K (KL), immediately available K (ΔK0), K available with difficulty (KX) and water soluble+exchangeable K (1 M NH4OAc K) in different soil layers (0 to 105 cm) under different treatments were in the following order: 100% nitrogen, phosphorus and potassium (NPK)+farmyard manure (FYM) > 100% NPK > control (no fertilizer) > 100% N >100% NP. The ARKE value, a measure of availability or intensity of labile K in soil decreased with profile depth due to greater K fixation by specific sites in the lower layers. The quantity of specifically sorbed K (KX) and the potential buffering capacity of soil (PBCK) showed a increasing trend with soil depth. In soil without K fertilizer treatments (control, 100% N and 100% NP) about 100% of the total K uptake by crops was from non-exchangeable soil K reserve as compared to 49·5 and 32·2% when annually 84 kg K/ha and 84 kg K/ha+FYM at the rate of 15 t/ha were applied. The results showed the greatest depletion of non-exchangeable K reserves in the plots which did not receive K fertilization. To ensure sustained crop production under intensive cropping, application of recommended dose of NPK plus FYM is required.


Sign in / Sign up

Export Citation Format

Share Document