AnaEE: a European infrastructure for future-oriented experimental ecosystem research

Author(s):  
Hans De Boeck ◽  
Simon Reynaert ◽  
Ivan Nijs ◽  
Karel Klem ◽  
Klaus Steenberg Larsen ◽  
...  

<p>Human activities are directly and indirectly generating major environmental pressures on ecosystems worldwide through climate change, pollution and other global changes. Altogether, these changes result in a rapid erosion of biodiversity and a perturbation of ecological and agricultural systems and services, prompting urgent societal questions on how to retain or promote sustainable ecosystem services in a global change context. Understanding the responses of ecosystems to such pressures and perturbations, and developing adaptation strategies critically requires state-of-the-art experimental facilities that are able to simulate multiple global change factors. AnaEE (Analysis and Experimentation on Ecosystems) brings together such facilities in a European-wide infrastructure for experimental research on managed and unmanaged terrestrial and aquatic ecosystems. It assists and integrates four types of national platforms (Open-air, Enclosed, Analytical, and Modelling) and provides support to scientists who wish to engage in research projects using these platforms or the data they generate. These services are organised through the Central Hub and three Service Centres (Technology, Data and Modelling, Interface and Synthesis). This integrated approach improves the quality and availability of data and projections on ecosystem responses to global changes, enabling policy makers and stakeholders to make fact-based  decisions on how to sustainably manage ecosystem services. As an example, we shortly discuss the new open air FATI-platform (UAntwerp) in which ecosystems can be exposed to various combinations of precipitation change and warming, and present first results of a study on the impacts of precipitation regime changes on temperate grassland.</p>

2016 ◽  
Vol 113 (38) ◽  
pp. 10589-10594 ◽  
Author(s):  
Kai Zhu ◽  
Nona R. Chiariello ◽  
Todd Tobeck ◽  
Tadashi Fukami ◽  
Christopher B. Field

Global changes in climate, atmospheric composition, and pollutants are altering ecosystems and the goods and services they provide. Among approaches for predicting ecosystem responses, long-term observations and manipulative experiments can be powerful approaches for resolving single-factor and interactive effects of global changes on key metrics such as net primary production (NPP). Here we combine both approaches, developing multidimensional response surfaces for NPP based on the longest-running, best-replicated, most-multifactor global-change experiment at the ecosystem scale—a 17-y study of California grassland exposed to full-factorial warming, added precipitation, elevated CO2, and nitrogen deposition. Single-factor and interactive effects were not time-dependent, enabling us to analyze each year as a separate realization of the experiment and extract NPP as a continuous function of global-change factors. We found a ridge-shaped response surface in which NPP is humped (unimodal) in response to temperature and precipitation when CO2 and nitrogen are ambient, with peak NPP rising under elevated CO2 or nitrogen but also shifting to lower temperatures. Our results suggest that future climate change will push this ecosystem away from conditions that maximize NPP, but with large year-to-year variability.


Author(s):  
Richard J. Norby ◽  
Lindsey E. Rustad ◽  
Jeffrey S. Dukes ◽  
Dennis S. Ojima ◽  
William J. Parton ◽  
...  

Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kathleen K. Treseder ◽  
Charlotte J. Alster ◽  
Linh Anh Cat ◽  
Morgan E. Gorris ◽  
Alexander L. Kuhn ◽  
...  

In this case study analysis, we identified fungal traits that were associated with the responses of taxa to 4 global change factors: elevated CO2, warming and drying, increased precipitation, and nitrogen (N) enrichment. We developed a trait-based framework predicting that as global change increases limitation of a given nutrient, fungal taxa with traits that target that nutrient will represent a larger proportion of the community (and vice versa). In addition, we expected that warming and drying and N enrichment would generate environmental stress for fungi and may select for stress tolerance traits. We tested the framework by analyzing fungal community data from previously published field manipulations and linking taxa to functional gene traits from the MycoCosm Fungal Portal. Altogether, fungal genera tended to respond similarly to 3 elements of global change: increased precipitation, N enrichment, and warming and drying. The genera that proliferated under these changes also tended to possess functional genes for stress tolerance, which suggests that these global changes—even increases in precipitation—could have caused environmental stress that selected for certain taxa. In addition, these genera did not exhibit a strong capacity for C breakdown or P acquisition, so soil C turnover may slow down or remain unchanged following shifts in fungal community composition under global change. Since we did not find strong evidence that changes in nutrient limitation select for taxa with traits that target the more limiting nutrient, we revised our trait-based framework. The new framework sorts fungal taxa into Stress Tolerating versus C and P Targeting groups, with the global change elements of increased precipitation, warming and drying, and N enrichment selecting for the stress tolerators.


2018 ◽  
Vol 374 (1763) ◽  
pp. 20170405 ◽  
Author(s):  
Heather M. Kharouba ◽  
Jayme M. M. Lewthwaite ◽  
Rob Guralnick ◽  
Jeremy T. Kerr ◽  
Mark Vellend

Over the past two decades, natural history collections (NHCs) have played an increasingly prominent role in global change research, but they have still greater potential, especially for the most diverse group of animals on Earth: insects. Here, we review the role of NHCs in advancing our understanding of the ecological and evolutionary responses of insects to recent global changes. Insect NHCs have helped document changes in insects' geographical distributions, phenology, phenotypic and genotypic traits over time periods up to a century. Recent work demonstrates the enormous potential of NHCs data for examining insect responses at multiple temporal, spatial and phylogenetic scales. Moving forward, insect NHCs offer unique opportunities to examine the morphological, chemical and genomic information in each specimen, thus advancing our understanding of the processes underlying species’ ecological and evolutionary responses to rapid, widespread global changes. This article is part of the theme issue ‘Biological collections for understanding biodiversity in the anthropocene’.


2019 ◽  
Vol 11 (1) ◽  
pp. 369-390 ◽  
Author(s):  
Piero Calosi ◽  
Hollie M. Putnam ◽  
Richard J. Twitchett ◽  
Fanny Vermandele

Evolution, extinction, and dispersion are fundamental processes affecting marine biodiversity. Until recently, studies of extant marine systems focused mainly on evolution and dispersion, with extinction receiving less attention. Past extinction events have, however, helped shape the evolutionary history of marine ecosystems, with ecological and evolutionary legacies still evident in modern seas. Current anthropogenic global changes increase extinction risk and pose a significant threat to marine ecosystems, which are critical for human use and sustenance. The evaluation of these threats and the likely responses of marine ecosystems requires a better understanding of evolutionary processes that affect marine ecosystems under global change. Here, we discuss how knowledge of ( a) changes in biodiversity of ancient marine ecosystems to past extinctions events, ( b) the patterns of sensitivity and biodiversity loss in modern marine taxa, and ( c) the physiological mechanisms underpinning species’ sensitivity to global change can be exploited and integrated to advance our critical thinking in this area.


2021 ◽  
Author(s):  
J.A. Ramirez ◽  
D. Craven ◽  
J.M. Posada ◽  
B. Reu ◽  
C.A. Sierra ◽  
...  

SummaryBackground and AimsCarbohydrate reserves play a vital role in plant survival during periods of negative carbon balance. Considering active storage of reserves, there is a trade-off between carbon allocation to growth and to reserves and defense. A resulting hypothesis is that allocation to reserves exhibits a coordinated variation with functional traits associated with the ‘fast-slow’ plant economics spectrum.MethodsWe tested the relationship between non-structural carbohydrates (NSC) of tree organs and functional traits using 61 angiosperm tree species from temperate and tropical forests with phylogenetic hierarchical Bayesian models.Key ResultsOur results provide evidence that NSC concentrations in woody organs and plant functional traits are largely decoupled, meaning that species’ resilience is unrelated to their position on the ‘fast-slow’ plant economics spectrum. In contrast, we found that variation between NSC concentrations in leaves and the fast-slow continuum was coordinated, as species with higher leaf NSC had traits values associated with resource conservative species such as lower SLA, lower Amax, and high wood density. We did not detect an influence of leaf habit on the variation of NSC concentrations in tree organs.ConclusionsEfforts to predict the response of ecosystems to global change will need to integrate a suite of plant traits, such as NSC concentrations in woody organs, that are independent of the ‘fast-slow’ spectrum and that capture how species respond to a broad range of global change factors.


Sign in / Sign up

Export Citation Format

Share Document