Numerical analysis of self-centering energy dissipation brace with arc steel plate for seismic resistance

2019 ◽  
Vol 125 ◽  
pp. 105751
Author(s):  
Hua Huang ◽  
Fantao Zhang ◽  
Wei Zhang ◽  
Mengxue Guo ◽  
Shota Urushadze ◽  
...  
2021 ◽  
Vol 11 (7) ◽  
pp. 3275
Author(s):  
Majid Yaseri Gilvaee ◽  
Massood Mofid

This paper investigates the influence of an opening in the infill steel plate on the behavior of steel trapezoidal corrugated infill panels. Two specimens of steel trapezoidal corrugated shear walls were constructed and tested under cyclic loading. One specimen had a single rectangular opening, while the other one had two rectangular openings. In addition, the percentage of opening in both specimens was 18%. The initial stiffness, ultimate strength, ductility ratio and energy dissipation capacity of the two tested specimens are compared to a specimen without opening. The experimental results indicate that the existence of an opening has the greatest effect on the initial stiffness of the corrugated steel infill panels. In addition, the experimental results reveal that the structural performance of the specimen with two openings is improved in some areas compared to the specimen with one opening. To that end, the energy dissipation capacity of the specimen with two openings is obtained larger than the specimen with one opening. Furthermore, a number of numerical analyses were performed. The numerical results show that with increasing the thickness of the infill plate or using stiffeners around the opening, the ultimate strength of a corrugated steel infill panel with an opening can be equal to or even more than the ultimate strength of that panel without an opening.


2015 ◽  
Vol 22 (5) ◽  
pp. 585-596 ◽  
Author(s):  
Damian BEBEN ◽  
Adam STRYCZEK

The paper presents a numerical analysis of corrugated steel plate (CSP) bridge with reinforced concrete (RC) relieving slab under static loads. Calculations were made based on the finite element method using Abaqus software. Two computation models were used; in the first one, RC slab was used, and the other was without it. The effect of RC slab to deformations of CSP shell was determined. Comparing the computational results from two numerical models, it can be concluded that when the relieving slab is applied, substantial reductions in displacements, stresses, bending mo­ments and axial thrusts are achieved. Relative reductions of displacements were in the range of 53–66%, and stresses of 73–82%. Maximum displacements and bending moments were obtained at the shell crown, and maximum stresses and axial thrusts at the quarter points. The calculation results were also compared to the values from experimental tests. The course of computed displacements and stresses is similar to those obtained from experimental tests, although the absolute values were generally higher than the measured ones. Results of numerical analyses can be useful for bridge engineering, with particular regard to bridges and culverts made from corrugated steel plates for the range of necessity of using additional relieving elements.


2018 ◽  
Vol 13 (6) ◽  
pp. 820-840 ◽  
Author(s):  
E. Fritsch ◽  
Y. Sieffert ◽  
H. Algusab ◽  
S. Grange ◽  
P. Garnier ◽  
...  

2021 ◽  
pp. 136943322110542
Author(s):  
Mahdi Usefvand ◽  
Ahmad Maleki ◽  
Babak Alinejad

Coupled steel plate shear wall (C-SPSW) is one of the resisting systems with high ductility and energy absorption capacity. Energy dissipation in the C-SPSW system is accomplished by the bending and shear behavior of the link beams and SPSW. Energy dissipation and floor displacement control occur through link beams at low seismic levels, easily replaced after an earthquake. In this study, an innovative coupled steel plate shear wall with a yielding FUSE is presented. The system uses a high-ductility FUSE pin element instead of a link beam, which has good replaceability after the earthquake. In this study, four models of coupled steel plate shear walls were investigated with I-shaped link beam, I-shaped link beam with reduced beam section (RBS), box-link beam with RBS, and FUSE pin element under cyclic loading. The finite element method was used through ABAQUS software to develop the C-SPSW models. Two test specimens of coupled steel plate shear walls were validated to verify the finite element method results. Comparative results of the hysteresis curves obtained from the finite element analysis with the experimental curves indicated that the finite element model offered a good prediction of the hysteresis behavior of C-SPSW. It is demonstrated in this study that the FUSE pin can improve and increase the strength and energy dissipation of a C-SPSW system by 19% and 20%, respectively.


2014 ◽  
Vol 6 ◽  
pp. 185629 ◽  
Author(s):  
Qiang Han ◽  
Junfeng Jia ◽  
Zigang Xu ◽  
Yulei Bai ◽  
Nianhua Song

Rhombic mild-steel plate damper (also named rhombic added damping and Stiffness (RADAS)) is a newly proposed and developed bending energy dissipation damper in recent years, and its mechanical properties, seismic behavior, and engineering application still need further investigations. In order to determine the basic mechanical performance of RADAS, fundamental material properties tests of three types of mild-steel specimen including domestically developed mild-steel material with low yield strength were carried out. Then, a quasistatic loading test was performed to evaluate the mechanical performance and hysteretic energy dissipation capacity of these rhombic mild-steel dampers manufactured by aforementioned three types of steel materials. Test results show that yield strength of domestically developed low yield strength steel (LYS) is remarkably lower than that of regular mild steel and its ultimate strain is also 1/3 larger than that of regular mild steel, indicating that the low yield strength steel has a favorable plastic deformation capability. The rhombic mild-steel plate damper with low yield strength steel material possesses smaller yield force and superior hysteretic energy dissipation capacity; thus they can be used to reduce engineering structural vibration and damage during strong earthquakes.


Buildings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 48 ◽  
Author(s):  
Miloš Drdácký ◽  
Shota Urushadze

This paper presents possibilities for anti-seismic improvement of traditional timber carpentry joints. It is known that the structural response of historical roof frameworks is highly dependent on the behavior of their joints, particularly, their capacity for rotation and energy dissipation. Any strengthening, or retrofitting, approach must take into account conservation requirements, usually expressed as conditions involving minimal intervention. Several retrofitting methods were tested on replicas of historical halved joints within various national and international research projects. The joints were produced with traditional hand tools, and made using aged material taken from a demolished building. The paper presents two approaches, each utilizing different retrofitting technologies that avoid completely dismantling the joint and consequently conserve frame integrity. The energy dissipation capacity is increased by inserting mild steel nails around a wooden pin, and connecting the two parts of the halved joint. In the second case, two thin plates made of a material with a high friction coefficient are inserted into the joint and fastened to the wooden elements. This is done by removing the wooden connecting pin and slightly opening a slot for the plates between the halved parts. In addition, the paper presents an application for disc brake plates, as well as thin plates made of oak.


Author(s):  
T. Berruti ◽  
S. Filippi ◽  
M. M. Gola ◽  
S. Salvano

Experimental methods and results of the stator bladed segment of an aircraft engine are presented. Investigation concern the energy dissipation due to friction between contact surfaces of adjacent segments. The influence of the force normal to the contact surface (due to interference between adjacent segments) on friction damping is shown. Moreover the experiments show the nature of friction at contact surfaces. The parameters of a contact model to be used in a numerical analysis have been identified from the experiments.


Sign in / Sign up

Export Citation Format

Share Document