Testing performance of pore pressure models implemented in one-dimensional site response analysis program against centrifuge test data measured in mildly sloping ground

2021 ◽  
Vol 149 ◽  
pp. 106867
Author(s):  
Usman Pervaiz ◽  
Duhee Park ◽  
Youssef Hashash ◽  
Guangchao Xing
2012 ◽  
Vol 43 ◽  
pp. 202-217 ◽  
Author(s):  
Camilo Phillips ◽  
Albert R. Kottke ◽  
Youssef M.A. Hashash ◽  
Ellen M. Rathje

2019 ◽  
Vol 36 (1) ◽  
pp. 111-137 ◽  
Author(s):  
Boqin Xu ◽  
Ellen M Rathje ◽  
Youssef Hashash ◽  
Jonathan Stewart ◽  
Kenneth Campbell ◽  
...  

Small-strain damping profiles developed from geotechnical laboratory testing have been observed to be smaller than the damping inferred from the observed site amplification from downhole array recordings. This study investigates the high-frequency spectral decay parameter ( κ0) of earthquake motions from soil sites and evaluates the use of κ0 to constrain the small-strain damping profile for one-dimensional site response analysis. Using data from 51 sites from the Kiban-Kyoshin strong motion network (KiK-net) array in Japan and six sites from California, a relationship was developed between κ0 at the surface and both the 30-m time-averaged shear wave velocity ( V s30) and the depth to the 2.5 km/s shear wave velocity horizon ( Z2.5). This relationship demonstrates that κ0 increases with decreasing V s30 and increasing Z2.5. An approach is developed that uses this relationship to establish a target κ0 from which to constrain the small-strain damping profile used in one-dimensional site response analysis. This approach to develop κ0-consistent damping profiles for site response analysis is demonstrated through a recent site amplification study of Central and Eastern North America for the NGA-East project.


2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Saeed Jan Mandokhail ◽  
Naik Muhammad ◽  
Muhammad Habib ◽  
Muhammad Irfan ◽  
Salah Uddin ◽  
...  

2019 ◽  
Vol 35 (2) ◽  
pp. 883-905 ◽  
Author(s):  
Marco Pilz ◽  
Fabrice Cotton

The one-dimensional (1-D) approach is still the dominant method to incorporate site effects in engineering applications. To bridge the 1-D to multidimensional site response analysis, we develop quantitative criteria and a reproducible method to identify KiK-net sites with significant deviations from 1-D behavior. We found that 158 out of 354 show two-dimensional (2-D) and three-dimensional (3-D) effects, extending the resonance toward shorter periods at which 2-D or 3-D site effects exceed those of the classic 1-D configurations and imposing an additional amplification to that caused by the impedance contrast alone. Such 2-D and 3-D effects go along with a large within-station ground motion variability. Remarkably, these effects are found to be more pronounced for small impedance contrasts. While it is hardly possible to identify common features in ground motion behavior for stations with similar topography typologies, it is not over-conservative to apply a safety factor to account for 2-D and 3-D site effects in ground motion modeling.


2020 ◽  
Author(s):  
Joaquin Garcia-Suarez ◽  
Domniki Asimaki

We revisit previous results in small-strain One-dimensional Site Response Analysis of heterogeneous soil deposits. Specifically, we focus on sites whose shear modulus distribution is described by means of a power law that yields zero stiffness at the free surface. First, we show that in some cases (which we characterize in detail) considerations of energy finitude should prevail over considerations of vanishingtractions at the free-surface, as these may pose acuter constrains. We re-evaluate previous contributions in light of this result. Second, we analyze the previously-reported occurrence of “energy accumulation in upper layers”, providing a physical explanation for it. In passing, we supply estimates of the natural frequencies, and compare these with our previous results.


2018 ◽  
Vol 20 (2) ◽  
pp. 57
Author(s):  
Lindung Zalbuin Mase

This paper presents one dimensional non-linear site response analysis of liquefaction potential caused by the 2000 and the 2007 earthquakes in coastal area of Bengkulu City, Bengkulu, Indonesia. Site investigations, including Standard Penetration Test (SPT) and shear wave velocity (VS) measurement, were conducted in three locations along the coastal area of Bengkulu City. Further, the site investigation data were used in simulation of one-dimensional non-linear site response analysis by applying the synthetic ground motions at bedrock. The results show that liquefaction could happen at 0 to 1.5 m deep. This was indicated by the excess pore water pressure ratio (ru) which exceeded one. At depth between 1.5 m and 20 m, the excess pore water pressure almost reached the initial effective stress decreasing the effective confinement pressure close to zero. The results also indicated that liquefaction is possible to occur in this depth range if a stronger earthquake occurs.


2008 ◽  
Vol 45 (4) ◽  
pp. 454-469 ◽  
Author(s):  
Duhee Park ◽  
Youssef M.A. Hashash

One-dimensional site response analysis is widely used in estimating local seismic site effects. The soil behavior in the analysis is often assumed to be independent of the rate of seismic loading. Laboratory test results, on the other hand, indicate that cyclic cohesive soil behavior is influenced by the rate of loading. Three models of rate-dependent dynamic soil behavior were derived based on available laboratory data. The models were implemented and evaluated in a modified one-dimensional equivalent linear site response analysis approach. Results show that rate-dependent shear modulus and damping can have a pronounced influence on propagated weak ground motion but a secondary influence on propagated strong motion. Rate dependence of the damping ratio has a greater impact on the computed response than rate dependence of the shear modulus. This paper highlights the relevance of the compatibility between frequencies at which dynamic soil properties are measured and their use in site response analysis.


Sign in / Sign up

Export Citation Format

Share Document