scholarly journals Does the One-Dimensional Assumption Hold for Site Response Analysis? A Study of Seismic Site Responses and Implication for Ground Motion Assessment Using KiK-Net Strong-Motion Data

2019 ◽  
Vol 35 (2) ◽  
pp. 883-905 ◽  
Author(s):  
Marco Pilz ◽  
Fabrice Cotton

The one-dimensional (1-D) approach is still the dominant method to incorporate site effects in engineering applications. To bridge the 1-D to multidimensional site response analysis, we develop quantitative criteria and a reproducible method to identify KiK-net sites with significant deviations from 1-D behavior. We found that 158 out of 354 show two-dimensional (2-D) and three-dimensional (3-D) effects, extending the resonance toward shorter periods at which 2-D or 3-D site effects exceed those of the classic 1-D configurations and imposing an additional amplification to that caused by the impedance contrast alone. Such 2-D and 3-D effects go along with a large within-station ground motion variability. Remarkably, these effects are found to be more pronounced for small impedance contrasts. While it is hardly possible to identify common features in ground motion behavior for stations with similar topography typologies, it is not over-conservative to apply a safety factor to account for 2-D and 3-D site effects in ground motion modeling.

2012 ◽  
Vol 43 ◽  
pp. 202-217 ◽  
Author(s):  
Camilo Phillips ◽  
Albert R. Kottke ◽  
Youssef M.A. Hashash ◽  
Ellen M. Rathje

2019 ◽  
Vol 36 (1) ◽  
pp. 111-137 ◽  
Author(s):  
Boqin Xu ◽  
Ellen M Rathje ◽  
Youssef Hashash ◽  
Jonathan Stewart ◽  
Kenneth Campbell ◽  
...  

Small-strain damping profiles developed from geotechnical laboratory testing have been observed to be smaller than the damping inferred from the observed site amplification from downhole array recordings. This study investigates the high-frequency spectral decay parameter ( κ0) of earthquake motions from soil sites and evaluates the use of κ0 to constrain the small-strain damping profile for one-dimensional site response analysis. Using data from 51 sites from the Kiban-Kyoshin strong motion network (KiK-net) array in Japan and six sites from California, a relationship was developed between κ0 at the surface and both the 30-m time-averaged shear wave velocity ( V s30) and the depth to the 2.5 km/s shear wave velocity horizon ( Z2.5). This relationship demonstrates that κ0 increases with decreasing V s30 and increasing Z2.5. An approach is developed that uses this relationship to establish a target κ0 from which to constrain the small-strain damping profile used in one-dimensional site response analysis. This approach to develop κ0-consistent damping profiles for site response analysis is demonstrated through a recent site amplification study of Central and Eastern North America for the NGA-East project.


2021 ◽  
Author(s):  
Olga-Joan Ktenidou ◽  
Faidra Gkika ◽  
Erion-Vasilis Pikoulis ◽  
Christos Evangelidis

<p>Although it is nowadays desirable and even typical to characterise site conditions in detail at modern recording stations, this is not yet a general rule in Greece, due to the large number and geographical dispersion of stations. Indeed, most of them are still characterised merely through geological descriptions or proxy-based parameters, rather than through in-situ measurements. Considering: 1. the progress made in recent years with sophisticated ground motion models and the need to define region-specific rock conditions based on data, 2. the move towards large open-access strong-motion databases that require detailed site metadata, and 3. that Greek-provenance recordings represent a significant portion of European seismic data, there are many reasons to improve our understanding of site response at these stations. Moreover, it has been shown recently in several regions that even sites considered as rock can exhibit amplification and ground motion variability, which has given rise to more scientific research into the definition of reference sites. For Greece, in-situ-characterisation campaigns for the entire network would impose unattainable time/budget constraints; so, instead, we implement alternative empirical approaches using the recordings themselves, such as the horizontal-to-vertical spectral ratio technique and its variability. We present examples of 'well-behaved', typical rock sites, and others whose response diverges from what is assumed for their class.</p><p> </p>


2020 ◽  
Vol 12 (13) ◽  
pp. 5273 ◽  
Author(s):  
Karma Tempa ◽  
Raju Sarkar ◽  
Abhirup Dikshit ◽  
Biswajeet Pradhan ◽  
Armando Lucio Simonelli ◽  
...  

Earthquakes, when it comes to natural calamities, are characteristically devastating and pose serious threats to buildings in urban areas. Out of multiple seismic regions in the Himalayas, Bhutan Himalaya is one that reigns prominent. Bhutan has seen several moderate-sized earthquakes in the past century and various recent works show that a major earthquake like the 2015 Nepal earthquake is impending. The southwestern city of Bhutan, Phuentsholing is one of the most populated regions in the country and the present study aims to explore the area using geophysical methods (Multispectral Analysis of Surface Waves (MASW)) for understanding possibilities pertaining to infrastructural development. The work involved a geophysical study on eight different sites in the study region which fall under the local area plan of Phuentsholing City. The geophysical study helps to discern shear wave velocity which indicates the soil profile of a region along with possible seismic hazard during an earthquake event, essential for understanding the withstanding power of the infrastructure foundation. The acquired shear wave velocity by MASW indicates visco-elastic soil profile down to a depth of 22.2 m, and it ranged from 350 to 600 m/s. A site response analysis to understand the correlation of bedrock rigidness to the corresponding depth was conducted using EERA (Equivalent-linear Earthquake Site Response Analysis) software. The amplification factors are presented for each site and maximum amplification factors are highlighted. These results have led to a clear indication of how the bedrock characteristics influence the surface ground motion parameters for the corresponding structure period. The results infer that the future constructional activity in the city should not be limited to two- to five-story buildings as per present practice. Apart from it, a parametric study was initiated to uncover whatever effects rigid bedrock has upon hazard parameters for various depths of soil profile up to 30 m, 40 m, 60 m, 80 m, 100 m, 120 m, 140 m, 160 m, 180 m and 200 m from the ground surface. The overriding purpose of doing said parametric study is centered upon helping the stack holders who can use the data for future development. Such a study is the first of its kind for the Bhutan region, which suffers from the unavailability of national seismic code, and this is a preliminary step towards achieving it.


Sign in / Sign up

Export Citation Format

Share Document