seismic site effects
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 21)

H-INDEX

11
(FIVE YEARS 3)

Geosciences ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 2
Author(s):  
Anna Chiaradonna ◽  
Marco Spadi ◽  
Paola Monaco ◽  
Felicia Papasodaro ◽  
Marco Tallini

Many of the urban settlements in Central Italy are placed nearby active faults and, consequently, the ground motion evaluation and seismic site effects under near-fault earthquakes are noteworthy issues to be investigated. This paper presents the results of site investigations, the seismic site characterization, and the local seismic response for assessing the effects induced by the Mw 6.7 2 February 1703, near-fault earthquake at the Madonna delle Fornaci site (Pizzoli, Central Italy) in which notable ground failure phenomena were observed, as witnessed by several coeval sources. Even though recent papers described these phenomena, the geological characteristics of the site and the failure mechanism have never been assessed through in-situ investigations and numerical modeling. Within a project concerning the assessment of soil liquefaction potential and co-seismic ground failure, deep and shallow continuous core drilling, geophysical investigations and in-hole tests have been carried out. Subsequently, the geotechnical model has been defined and the numerical quantification of the different hypotheses of failure mechanisms has been evaluated. Analyses showed that liquefaction did not occur, and the excess pore water pressure induced by the shaking was not the source of the ground failure. Therefore, it was hypothesized that the sinkhole was likely caused by earthquake-induced gas eruption.


2021 ◽  
pp. 100037
Author(s):  
Henrique Vicêncio ◽  
Paula Teves-Costa ◽  
Paulo Sá Caetano

2021 ◽  
Vol 14 (18) ◽  
Author(s):  
Aboubakr Chaaraoui ◽  
Mimoun Chourak ◽  
José A. Peláez ◽  
Seif-eddine Cherif

2021 ◽  
Vol 40 (5) ◽  
pp. 386-387
Author(s):  
Ravi Pangeni

A student training program, Engineering Seismology and Seismic Microzonation for Seismic Site Effects Assessment, was held 18–22 January 2020 in Lalitpur, Nepal. It was created through the collaboration of Thammasat University and Tribhuvan University, with support from Geoscientists Without Borders® (GWB). The goal of the program was to connect students with modern geophysical instrumentation and software through training. It specifically advanced theoretical and hands-on field-based knowledge pertaining to geotechnical earthquake engineering aspects and applications. The training served as part of a broader GWB project, Seismic Site Effects Study in Nepal, encompassing basin geometry, site characteristics, and the study of seismic site effects through microtremor measurements in Kathmandu Valley.


2021 ◽  
Vol 80 (7) ◽  
Author(s):  
S. Trevisani ◽  
F. Pettenati ◽  
S. Paudyal ◽  
D. Sandron

AbstractThis study reports the geostatistical analysis of a set of 40 single-station horizontal-to-vertical spectral ratio (HVSR) passive seismic survey data collected in the Kathmandu basin (Nepal). The Kathmandu basin is characterized by a heterogeneous sedimentary cover and by a complex geo-structural setting, inducing a high spatial variability of the bedrock depth. Due to the complex geological setting, the interpretation and analysis of soil resonance periods derived from the HVSR surveys is challenging, both from the perspective of bedrock depth estimation as well as of seismic-site effects characterization. To exploit the available information, the HVSR data are analyzed by means of a geostatistical approach. First, the spatial continuity structure of HVSR data is investigated and interpreted taking into consideration the geological setting and available stratigraphic and seismic information. Then, the exploitation of potential auxiliary variables, based on surface morphology and distance from outcropping bedrock, is evaluated. Finally, the mapping of HVSR resonance periods, together with the evaluation of interpolation uncertainty, is obtained by means of kriging with external drift interpolation. This work contributes to the characterization of local seismic response of the Kathmandu basin. The resulting map of soil resonance periods is compatible with the results of preceding studies and it is characterized by a high spatial variability, even in areas with a deep bedrock and long resonance periods.


2021 ◽  
Author(s):  
Marco Spadi ◽  
Marco Tallini ◽  
Matteo Albano ◽  
Domenico Cosentino ◽  
Marco Nocentini ◽  
...  

<p>Assessing seismic site effects is essential in earthquake hazard studies. Local seismic amplification is strongly related to the site stratigraphy and topography, the dynamic properties of the subsoil deposits, and the earthquake features. The evaluation of these factors is mandatory to achieve a consistent model of the seismic hazard at small scale. Here we discuss the case of Castelnuovo village (L’Aquila, central Italy). Located on a small ridge, approximately 60 m higher than the valley floor, the village was heavily struck by April 6, 2009, M<sub>w</sub> 6.3 L’Aquila earthquake, with catastrophic collapse of several buildings. Previous studies ascribed the observed damage to the presence of shallow caves beneath the buildings or to the topographic amplification.</p><p>In this work, an updated and detailed subsoil model for Castelnuovo site has been provided, based updated geological surveys, such as borehole logs and geophysical data consisting in microtremor measurements and down-hole.</p><p>These measurements identified resonant frequencies occurring in the range of 0.7-3.0 Hz. These frequency peaks are related to the presence of a velocity contrast at depth between the San Nicandro silts and the Madonna della Neve breccias, as indicated by the performed deep boreholes. Thanks to analytical, numerical, and geostatistical techniques, we identified the main impedance contrast at approximately 210 m depth from the top of the hill, much deeper than previous studies. These new findings allowed to create an accurate and consistent subsoil model summarized by two geological cross-sections of the Castelnuovo ridge, showing that the seismic site effects at the Castelnuovo village are mainly related to stratigraphic amplification.</p>


2021 ◽  
Author(s):  
Silvia Castellaro ◽  
Giulia Alessandrini ◽  
Giuseppe Musinu ◽  
Martina Del Vecchio

<p>At the early stages of seismology, seismic stations were installed directly on rock to minimize the effects of the fine sediments/weathering on the recorded seismic waves. The bulky size of permanent installation seismometers, their need for external batteries, cables and levelling, led to place seismic stations on artificial ground, such as ad hoc concrete platforms. In addition, to ensure protection from environmental conditions, vandalism and to facilitate maintenance, many seismic stations were placed inside structures. A common installation in Italy, as an example, is at the base of the (5-8 m tall) towers of the electrical national service.</p><p>The presence of a structure around the instrument perturbs the recorded motion. This phenomenon, generally referred to as soil-structure interaction, can be summarized into three main effects. The first one is the transmission of the structure own motion to the surrounding ground. When seismic waves hit a building, the building enters forced oscillation and this vibration is re-transmitted to the ground. Sensors placed inside the building record, therefore, a composite signal, made of seismic waves and the response of the structure to them. This affects the sensors also when they are isolated from the building foundations by means of cuts around the sensor pillars, because the ground under the pillar and the ground under the structure is the same and is continuous. The second effect lays in the fact that a foundation, typically made of reinforced concrete, acts as a layer with seismic impedance much higher than any natural soil. Seismic waves travelling upwards will be reflected downwards as they hit the foundation. On one side they shake the structure (effect 1), but on the other only a small fraction of them crosses the foundation (effect 2) and can be recorded by the instruments installed on the foundation. The same applies to the concrete pillars where seismic sensors are installed. These installations violate the basic principle of any physical measurements according to which when an interface is needed between the instrument and the object of measurement (the ground) then the interface must have an impedance as close as possible to the object of measurement, in order to minimize the perturbation of the wavefield. Clearly concrete platforms/pillars do not have this property, unless when installed on very stiff rocks. The third main effect (effect 3) concerns the back reflection of the surface waves reaching the foundation. Similarly to effect 2, when surface waves strike an extended rigid layer, such as the foundations of a building, they are mainly reflected back along the Earth's surface. This implies that, in seismic tremor recordings (or seismic events) carried out inside a structure, a fraction of surface waves will be missing.</p><p>In this work we show these effects in a number of real cases and we show the consequences that this can have in the assessment of seismic site effects, of PGA, and on the computation of attenuation laws.</p>


2020 ◽  
Vol 10 (21) ◽  
pp. 7443
Author(s):  
Han-Saem Kim ◽  
Chang-Guk Sun ◽  
Mingi Kim ◽  
Hyung-Ik Cho ◽  
Moon-Gyo Lee

Soil and rock characteristics are primarily affected by geological, geotechnical, and terrain variation with spatial uncertainty. Earthquake-induced hazards are also strongly influenced by site-specific seismic site effects associated with subsurface strata and soil stiffness. For reliable mapping of soil and seismic zonation, qualification and normalization of spatial uncertainties is required; this can be achieved by interactive refinement of a geospatial database with remote sensing-based and geotechnical information. In this study, geotechnical spatial information and zonation were developed while verifying database integrity, spatial clustering, optimization of geospatial interpolation, and mapping site response characteristics. This framework was applied to Daejeon, South Korea, to consider spatially biased terrain, geological, and geotechnical properties in an inland urban area. For developing the spatially best-matched geometry with remote sensing data at high spatial resolution, the hybrid model blended with two outlier detection methods was proposed and applied for geotechnical datasets. A multiscale grid subdivided by hot spot-based clusters was generated using the optimized geospatial interpolation model. A principal component analysis-based unified zonation map identified vulnerable districts in the central old downtown area based on the integration of the optimized geoprocessing framework. Performance of the geospatial mapping and seismic zonation was discussed with digital elevation model, geological map.


Sign in / Sign up

Export Citation Format

Share Document