Site response analysis using one-dimensional equivalent-linear method and Bayesian filtering

2017 ◽  
Vol 89 ◽  
pp. 43-54 ◽  
Author(s):  
Rodrigo Astroza ◽  
César Pastén ◽  
Felipe Ochoa-Cornejo
2012 ◽  
Vol 43 ◽  
pp. 202-217 ◽  
Author(s):  
Camilo Phillips ◽  
Albert R. Kottke ◽  
Youssef M.A. Hashash ◽  
Ellen M. Rathje

2016 ◽  
Vol 32 (3) ◽  
pp. 1845-1865 ◽  
Author(s):  
Byungmin Kim ◽  
Youssef M. A. Hashash ◽  
Jonathan P. Stewart ◽  
Ellen M. Rathje ◽  
Joseph A. Harmon ◽  
...  

This study investigates the conditions for which one-dimensional (1-D) nonlinear (NL) site response analysis results are distinct from equivalent-linear (EL) results and provides guidance for predicting when differences are large enough to be of practical significance. Relative differences in spectral accelerations and Fourier amplitudes computed from NL and EL analyses are assessed for a range of site conditions and for suites of input motions appropriate for active crustal and stable continental regions. Among several considered parameters, EL/NL differences are most clearly dependent on shear strain index ( I γ), defined as the ratio of input motion peak velocity to time-averaged shear-wave velocity in the top 30 m of the soil profile. For small I γ (generally under 0.03%), EL and NL results are practically identical, whereas at larger strains, differences can be significant for frequencies >0.3 Hz. Frequency-dependent I γ values are recommended for conditions above which NL analyses are preferred to EL.


2019 ◽  
Vol 36 (1) ◽  
pp. 111-137 ◽  
Author(s):  
Boqin Xu ◽  
Ellen M Rathje ◽  
Youssef Hashash ◽  
Jonathan Stewart ◽  
Kenneth Campbell ◽  
...  

Small-strain damping profiles developed from geotechnical laboratory testing have been observed to be smaller than the damping inferred from the observed site amplification from downhole array recordings. This study investigates the high-frequency spectral decay parameter ( κ0) of earthquake motions from soil sites and evaluates the use of κ0 to constrain the small-strain damping profile for one-dimensional site response analysis. Using data from 51 sites from the Kiban-Kyoshin strong motion network (KiK-net) array in Japan and six sites from California, a relationship was developed between κ0 at the surface and both the 30-m time-averaged shear wave velocity ( V s30) and the depth to the 2.5 km/s shear wave velocity horizon ( Z2.5). This relationship demonstrates that κ0 increases with decreasing V s30 and increasing Z2.5. An approach is developed that uses this relationship to establish a target κ0 from which to constrain the small-strain damping profile used in one-dimensional site response analysis. This approach to develop κ0-consistent damping profiles for site response analysis is demonstrated through a recent site amplification study of Central and Eastern North America for the NGA-East project.


2019 ◽  
Vol 35 (2) ◽  
pp. 883-905 ◽  
Author(s):  
Marco Pilz ◽  
Fabrice Cotton

The one-dimensional (1-D) approach is still the dominant method to incorporate site effects in engineering applications. To bridge the 1-D to multidimensional site response analysis, we develop quantitative criteria and a reproducible method to identify KiK-net sites with significant deviations from 1-D behavior. We found that 158 out of 354 show two-dimensional (2-D) and three-dimensional (3-D) effects, extending the resonance toward shorter periods at which 2-D or 3-D site effects exceed those of the classic 1-D configurations and imposing an additional amplification to that caused by the impedance contrast alone. Such 2-D and 3-D effects go along with a large within-station ground motion variability. Remarkably, these effects are found to be more pronounced for small impedance contrasts. While it is hardly possible to identify common features in ground motion behavior for stations with similar topography typologies, it is not over-conservative to apply a safety factor to account for 2-D and 3-D site effects in ground motion modeling.


2021 ◽  
pp. 875529302098199
Author(s):  
Boqin Xu ◽  
Ellen M Rathje

This study uses recorded ground motions at soil sites over a range of shaking intensities to investigate the effects of soil nonlinearity on the high-frequency spectral decay, as quantified by the parameter [Formula: see text]. Equivalent-linear site response analyses indicate that [Formula: see text] should increase significantly with increasing shear strain and ground motion intensity due to increases in soil damping. However, using more than 2500 motions from 32 sites, this study shows that [Formula: see text] does not vary systematically with the induced shear strain but instead remains at its small-strain value. This observation indicates that high-frequency components of motion are consistent with small-strain damping, rather than the strain-compatible damping used in site response analysis. It is demonstrated that equivalent-linear site response analyses for large strains can be modified to generate surface motions with more realistic high-frequency content by scaling the predicted surface motion to fit the small-strain [Formula: see text] or by employing frequency-dependent soil properties that account for the frequency dependence of the induced strains.


Sign in / Sign up

Export Citation Format

Share Document