Solar photocatalytic removal of herbicides from real water by using sol–gel synthesized nanocrystalline TiO2: Operational parameters optimization and toxicity studies

Solar Energy ◽  
2013 ◽  
Vol 87 ◽  
pp. 150-157 ◽  
Author(s):  
E.I. Seck ◽  
J.M. Doña-Rodríguez ◽  
C. Fernández-Rodríguez ◽  
D. Portillo-Carrizo ◽  
M.J. Hernández-Rodríguez ◽  
...  
2012 ◽  
Vol 203 ◽  
pp. 52-62 ◽  
Author(s):  
E.I. Seck ◽  
J.M. Doña-Rodríguez ◽  
C. Fernández-Rodríguez ◽  
O.M. González-Díaz ◽  
J. Araña ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
pp. 28
Author(s):  
KOMARAIAH DURGAM ◽  
RADHA EPPA ◽  
REDDY M. V. RAMANA ◽  
KUMAR J. SIVA ◽  
R. SAYANNA ◽  
...  

2012 ◽  
Vol 15 (2) ◽  
Author(s):  
Mohammad Hossein Habibi ◽  
Maryam Mikhak

AbstractNanostructured zinc titanate (NZT) was synthesized in high yield via a one-step and template-free sol-gel route. The prepared nanocomposite exhibited good size uniformity and regularity. The enhanced photocatalytic activity of the NZT was evaluated in the degradation and mineralization of Indocorn Brilliant Red (M5B) under metal halide lamp irradiation. The effects of different parameters such as pH of the solution, and initial dye concentration on photodegradation of M5B were analyzed. The degradation of M5B follows pseudo-first order kinetics according to the Langmuir-Hinshelwood model. The experimental results showed that the initial concentration of azo dye in the dye mixture greatly affected the degradation efficiency. At M5B concentrations of 10 mg/L, the optimum conditions for the highest degradation efficiency (94%) of azo dye were a photocatalyst dosage of 0.01 g/L and an initial solution pH of 9. This study provided new insight into the design and preparation of nanomaterial demonstrated an excellent ability to remove organic pollutants in wastewater.


2008 ◽  
Vol 47 (3-4) ◽  
pp. 155-161 ◽  
Author(s):  
Hiroshi Kominami ◽  
Kimiyo Yukishita ◽  
Takashi Kimura ◽  
Moeko Matsubara ◽  
Keiji Hashimoto ◽  
...  

2010 ◽  
Vol 10 (1) ◽  
pp. 26-31 ◽  
Author(s):  
Canggih Setya Budi ◽  
Indriana Kartini ◽  
Bambang Rusdiarso

Mesoporous titania powders with high-order crystalline building blocks had been synthesized through the sol-gel process using potato starch gel template. Internal spongelike pore structure of starch gel template was generated by heating the starch granules at 95 °C in water solution and freezing the starch gel at -15 °C. The synthesis routes were performed by immersing the starch gel template for 4 days into the white colloidal solution of TiO2 nanoparticles, which were prepared by hydrolyzing titanium (IV) tetraisopropoxide (TTIP) in ethanol at pH 1. Mesoporous TiO2 powders were obtained by two different ways of template removal, performed by calcination of the TiO2-starch composites at 600 °C for 4 h or combination of extraction with ethanol-HCl (2:1) at 80 °C and calcination at 500 °C for 4 h. Fourier Transform Infra Red (FT-IR) spectra shows both of template removal methods result in decreasing of characteristic vibrational band of the starch hydrocarbon on the resulted TiO2 powders. The X-Ray Diffraction (XRD) pattern imply that the concentrations of starch gel template influence the anatase crystallite peaks intensity of the synthesized TiO2 powders. TiO2 templated by 20% of starch sponges gel has highest intensity of anatase crystallite. Scherrer calculation inidicated that anatase particle size has nanoscale dimmension up to 12.96 nm. The nano-architecture feature of mesoporous TiO2 scaffolds was also evaluated by the Scanning Electron Microscope (SEM). It is shown that mesoporous TiO2 framework consist of nanocrystalline TiO2 particles as buiding blocks. The N2 adsorption-desorption isotherm curves assign that TiO2 powder resulted from extraction-calcination route has higher mesoporosity than that of only calcinated. The synthesized mesoporous TiO2 powder exhibits high Brunauer-Emmet-Teller (BET) specific surface area up to 65.65 m2/g.   Keywords: mesoporous TiO2, potato starch, template


2018 ◽  
Vol 12 (3) ◽  
pp. 240-247
Author(s):  
Anna Szczygielska ◽  
Zbigniew Pędzich ◽  
Wojciech Maziarz

This work describes the production of nanocrystalline TiO2 and SnO2 oxides, as well as their nanocomposites (containing 26.9, 58.7 and 79.0wt.% of SnO2) with two-stage sol-gel method combined with high temperature treatment. The phase composition and medium size crystallites were determined using X-ray diffraction analysis (XRD) and revealed that the nanocomposites crystallize in tetragonal structures of TiO2 - anatase and SnO2 - cassiterite. Specific surface area of the nanopowders, measured using sorption method (BET), changed from 42.1 to 160.8m2/g. The morphology of the nanopowders was observed using transmission electron microscope (TEM). As indicated by TEM images, the manufactured nanopowders were well crystallized and consisted of small, spherical grains. The obtained nanopowders were also tested for NH3 gas detection application. The presented method of nanopowders synthesis enables to obtain nanocrystalline TiO2 and SnO2 oxides, as well as composites from TiO2-SnO2 of known and controlled chemical and phase composition. It also enables to obtain composites used for gas sensors. The sensor made of composite containing 58.7wt.% of SnO2 exhibited the best NH3 sensing features.


2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Divya Jyoti

AbstractA four phase model air/glass/indium doped tin oxide/TiO2 has been studied by modifying Rouard’s model to calculate the final transmittance from TiO2 layer to be used as photoanode in dye-sensitized solar cells. An optical simulation for the reflectance and transmittance has been executed for the constructed nanocrystalline TiO2 films. To validate the theoretical results TiO2 film has been deposited onto indium doped tin oxide (ITO) layer by sol-gel dip coating technique. It has been found that the incident light suffers losses by 5-15% on passage through TiO2 coated ITO layer. Experimentally it has been observed on the basis of efficiency value that meso-nano combination is the best candidate to be used as photoanode in a dye-sensitize solar cell.


2011 ◽  
Vol 161 (1) ◽  
pp. 153-162 ◽  
Author(s):  
M.J. López-Muñoz ◽  
J. Aguado ◽  
A. Revilla

Sign in / Sign up

Export Citation Format

Share Document