High performance and high stability mechanisms of microcrystalline silicon-based thin-film solar cells deposited by laser-assisted plasma-enhancement chemical vapor deposition system

Solar Energy ◽  
2014 ◽  
Vol 107 ◽  
pp. 365-371 ◽  
Author(s):  
Hsin-Ying Lee ◽  
Yu-Chang Lin ◽  
Chin-Hsiang Chang ◽  
Chun-Yen Tseng
2006 ◽  
Vol 45 (4B) ◽  
pp. 3516-3518 ◽  
Author(s):  
Shui-Yang Lien ◽  
Dong-Sing Wuu ◽  
Hsin-Yuan Mao ◽  
Bing-Rui Wu ◽  
Yen-Chia Lin ◽  
...  

Solar Cells ◽  
1985 ◽  
Vol 14 (3) ◽  
pp. 289-291 ◽  
Author(s):  
B.J. Stanbery ◽  
W.S. Chen ◽  
R.A. Mickelsen ◽  
G.J. Collins ◽  
K.A. Emery ◽  
...  

10.30544/128 ◽  
2015 ◽  
Vol 21 (1) ◽  
pp. 7-14
Author(s):  
Meysam Zarchi ◽  
Shahrokh Ahangarani

The effect of new growth techniques on the mobility and stability of amorphous silicon (a-Si:H) thin film transistors (TFTs) has been studied. It was suggested that the key parameter controlling the field-effect mobility and stability is the intrinsic stress in the a-Si:H layer. Amorphous and microcrystalline silicon films were deposited by radiofrequency plasma enhanced chemical vapor deposition (RF-PECVD) and hot-wire chemical vapor deposition (HW-CVD) at 100 ºC and 25 ºC. Structural properties of these films were measured by Raman Spectroscopy. Electronic properties were measured by dark conductivity, σd, and photoconductivity, σph. For amorphous silicon films deposited by RF-PECVD on PET, photosensitivity's of >105 were obtained at both 100 º C and 25 ºC. For amorphous silicon films deposited by HW-CVD, a photosensitivity of > 105 was obtained at 100 ºC. Microcrystalline silicon films deposited by HW-CVD at 95% hydrogen dilution show σph~ 10-4 Ω-1cm-1, while maintaining a photosensitivity of ~102 at both 100 ºC and 25 ºC. Microcrystalline silicon films with a large crystalline fraction (> 50%) can be deposited by HW-CVD all the way down to room temperature.


Sign in / Sign up

Export Citation Format

Share Document