Efficiency evaluation on Cs x [NH 2 CH = NH 2 ] 1− x Pb(I 1− y Br y ) 3 /crystalline silicon tandem solar cells

Solar Energy ◽  
2017 ◽  
Vol 147 ◽  
pp. 432-438 ◽  
Author(s):  
Lili Zhang ◽  
Fuyang Tian ◽  
Ziang Xie ◽  
Guogang Qin
Science ◽  
2020 ◽  
Vol 367 (6482) ◽  
pp. 1135-1140 ◽  
Author(s):  
Yi Hou ◽  
Erkan Aydin ◽  
Michele De Bastiani ◽  
Chuanxiao Xiao ◽  
Furkan H. Isikgor ◽  
...  

Stacking solar cells with decreasing band gaps to form tandems presents the possibility of overcoming the single-junction Shockley-Queisser limit in photovoltaics. The rapid development of solution-processed perovskites has brought perovskite single-junction efficiencies >20%. However, this process has yet to enable monolithic integration with industry-relevant textured crystalline silicon solar cells. We report tandems that combine solution-processed micrometer-thick perovskite top cells with fully textured silicon heterojunction bottom cells. To overcome the charge-collection challenges in micrometer-thick perovskites, we enhanced threefold the depletion width at the bases of silicon pyramids. Moreover, by anchoring a self-limiting passivant (1-butanethiol) on the perovskite surfaces, we enhanced the diffusion length and further suppressed phase segregation. These combined enhancements enabled an independently certified power conversion efficiency of 25.7% for perovskite-silicon tandem solar cells. These devices exhibited negligible performance loss after a 400-hour thermal stability test at 85°C and also after 400 hours under maximum power point tracking at 40°C.


2012 ◽  
Vol 1426 ◽  
pp. 45-49 ◽  
Author(s):  
M.M. de Jong ◽  
J.K. Rath ◽  
R.E.I. Schropp

ABSTRACTAs an alternative to crystalline silicon or thin film solar cells on rigid glass substrates, we aim to fabricate amorphous silicon (a-Si)/nanocrystalline silicon (nc-Si) tandem thin film solar cells on cheap flexible substrates. We have chosen polycarbonate as the superstrate and adapted the a-Si and nc-Si deposition processes for deposition at a maximum temperature of 130°. Because a-Si deposited at low temperatures has a high band gap, we were able to fabricate very thin (<1.2 μm) a-Si/nc-Si solar cells, because the high band gap of the a-Si shifts the current generation more towards the bottom cell, allowing for a much thinner (900 nm) bottom cell. The somewhat lower Jsc of the complete cell is partly compensated by a higher Vocwhich results in an initial conversion efficiency of 9.5% for the low temperature tandem solar cells on glass.


2018 ◽  
Vol 179 ◽  
pp. 36-44 ◽  
Author(s):  
Zhiwei Ren ◽  
Jixiang Zhou ◽  
Yaokang Zhang ◽  
Annie Ng ◽  
Qian Shen ◽  
...  

2015 ◽  
Vol 37 ◽  
pp. 434 ◽  
Author(s):  
Razagh Hafezi ◽  
Soroush Karimi ◽  
Sharie Jamalzae ◽  
Masoud Jabbari

“Micromorph” tandem solar cells consisting of a microcrystalline silicon bottom cell and an amorphous silicon top cell are considered as one of the most promising new thin-film silicon solar-cell concepts. Their promise lies in the hope of simultaneously achieving high conversion efficiencies at relatively low manufacturing costs. The concept was introduced by IMT Neuchâtel, based on the VHF-GD (very high frequency glow discharge) deposition method. The key element of the micromorph cell is the hydrogenated microcrystalline silicon bottom cell that opens new perspectives for low-temperature thin-film crystalline silicon technology. This paper describes the use, within p–i–n- and n–i–p-type solar cells, of hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (_c-Si:H) thin films (layers), both deposited at low temperatures (200_C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen. Optical and electrical properties of the i-layers are described. Finally, present performances and future perspectives for a high efficiency ‘micromorph’ (mc-Si:Hya-Si:H) tandem solar cells are discussed.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012191
Author(s):  
A B Nikolskaia ◽  
S S Kozlov ◽  
M F Vildanova ◽  
O K Karyagina ◽  
O I Shevaleevskiy

Abstract Here novel high efficient semi-transparent perovskite solar cells (PSCs) based on ZrO2 photoelectrodes were fabricated and were used as top elements in tandem systems with crystalline silicon (c-Si) solar cells in four-terminal configuration. The comparative analysis of photovoltaic parameters measured for PSCs, c-Si solar cells and PSC/c-Si tandem solar cells demonstrated that the use of ZrO2 photoelectrodes allows to improve the PSC performance and to achieve efficiencies for PSC/c-Si tandem solar cell higher than for a standalone c-Si solar cell under varying illumination conditions.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7614
Author(s):  
Jiyeon Hyun ◽  
Kyung Mun Yeom ◽  
Ha Eun Lee ◽  
Donghwan Kim ◽  
Hae-Seok Lee ◽  
...  

Tandem solar cells, based on perovskite and crystalline silicon absorbers, are promising candidates for commercial applications. Tin oxide (SnO2), applied via the spin-coating method, has been among the most used electron transfer layers in normal (n-i-p) perovskite/silicon tandem cells. SnO2 synthesized by chemical bath deposition (CBD) has not yet been applied in tandem devices. This method shows improved efficiency in perovskite single cells and allows for deposition over a larger area. Our study is the first to apply low-temperature processed SnO2 via CBD to a homojunction silicon solar cell without additional deposition of a recombination layer. By controlling the reaction time, a tandem efficiency of 16.9% was achieved. This study shows that tandem implementation is possible through the CBD method, and demonstrates the potential of this method in commercial application to textured silicon surfaces with large areas.


Sign in / Sign up

Export Citation Format

Share Document