Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: An experimental study

Solar Energy ◽  
2018 ◽  
Vol 173 ◽  
pp. 1002-1010 ◽  
Author(s):  
Arash Kazemian ◽  
Mohammad Hosseinzadeh ◽  
Mohammad Sardarabadi ◽  
Mohammad Passandideh-Fard
2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


Author(s):  
Joseph Rabovitser ◽  
Stan Wohadlo ◽  
John M. Pratapas ◽  
Serguei Nester ◽  
Mehmet Tartan ◽  
...  

Paper presents the results from development and successful testing of a 200 kW POGT prototype. There are two major design features that distinguish POGT from a conventional gas turbine: a POGT utilizes a partial oxidation reactor (POR) in place of a conventional combustor which leads to a much smaller compressor requirement versus comparably rated conventional gas turbine. From a thermodynamic perspective, the working fluid provided by the POR has higher specific heat than lean combustion products enabling the POGT expander to extract more energy per unit mass of fluid. The POGT exhaust is actually a secondary fuel gas that can be combusted in different bottoming cycles or used as synthesis gas for hydrogen or other chemicals production. Conversion steps for modifying a 200 kW radial turbine to POGT duty are described including: utilization of the existing (unmodified) expander; replacement of the combustor with a POR unit; introduction of steam for cooling of the internal turbine structure; and installation of a bypass air port for bleeding excess air from the compressor discharge because of 45% reduction in combustion air requirements. The engine controls that were re-configured for start-up and operation are reviewed including automation of POGT start-up and loading during light-off at lean condition, transition from lean to rich combustion during acceleration, speed control and stabilization under rich operation. Changes were implemented in microprocessor-based controllers. The fully-integrated POGT unit was installed and operated in a dedicated test cell at GTI equipped with extensive process instrumentation and data acquisition systems. Results from a parametric experimental study of POGT operation for co-production of power and H2-enriched synthesis gas are provided.


1972 ◽  
Vol 94 (4) ◽  
pp. 261-270 ◽  
Author(s):  
R. E. Wagner ◽  
H. R. Velkoff

The paper presents a review of analytical and experimental work which has been done on flows in rotating ducts. It presents the results of an experimental study to measure the secondary flows predicted by the previous analytical work. A duct of approximately 3 ft in length with a cross section of 2 × 5 in. was rotated up to speeds of 300 rpm. Air was used as the working fluid. Static pressures, total pressures, and yaw angles were measured at selected points along the channel. The flow regime examined was the developing flow from the entrance to the exit of the channel. Examination of the data revealed the presence of two longitudinal vortices which extended the length of the channel. Pressure distribution across the height of the channel and across the width of the channel was obtained. The magnitude of the cross-flow velocities in the channel were determined and mapped. It was found that the data for various rotational speeds could be collapsed upon a single curve by dividing all data by the rotational speeds. The results of the experimental study provide solid verification for the hypothesis of longitudinal vortices in rotating ducts.


1974 ◽  
Vol 96 (1) ◽  
pp. 168-173 ◽  
Author(s):  
R. A. Burton ◽  
H. J. Carper ◽  
Y. C. Hsu

Velocity profiles and pressure distributions are reported for turbulent flow under tilted pads in a large scale bearing model (6-ft shaft size, with air as the working fluid). Results are extended analytically to other bearing sizes and aspect ratios.


Author(s):  
Gui Xiang Yang ◽  
J. S. Chin

An experimental study has been conducted on the effect of high back pressure on the spray characteristics of a plain jet injector under coaxial high velocity air flow. The air pressures tested range from 1 to 16 atm, the range of air velocity is 60–120 m/s, the pressure drops of injector tested are 200–2000 kpa. Working fluid is water. Injector hole diameter is 0.5 mm. The key feature of the experiment is using a convergent-divergent nozzle to maintain a high air pressure inthe test chamber and at the same time to maintain a high velocity air flow in the atomization zone. Such an experimental arrangement totally eliminates air and droplets recirculation in the test chamber and problem related to slow droplet settling in a commonly used pressurized vessel for high back pressure atomization research. The results show that SMD decreases monotonicly with the increase of back pressure or air velocity, at different air velocities, the effect of air pressure is different. The drop size distribution parameter N in Rosin-Rammler distribution decreases slightly with increase of back pressure or air velocity.


Sign in / Sign up

Export Citation Format

Share Document