Determination of front surface recombination velocity of silicon solar cells using the short-wavelength spectral response

2007 ◽  
Vol 91 (15-16) ◽  
pp. 1515-1520 ◽  
Author(s):  
A.K. Sharma ◽  
S.K. Agarwal ◽  
S.N. Singh
2012 ◽  
Vol 472-475 ◽  
pp. 1846-1850
Author(s):  
Shan Shan Dai ◽  
Gao Jie Zhang ◽  
Xiang Dong Luo ◽  
Jing Xiao Wang ◽  
Wen Jun Chen ◽  
...  

In this work, the effect of aluminum back surface field formed by screen printed various amount of Al paste on the effective rear surface recombination velocity (Seff) and the internal rear reflectance coeffeicient (Rb) of commercial mono-silicon solar cells was investigated. We demonstrated the effect of Seffand Rbon the performance of Al-BSF solar cells by simulating them with PC1D. The simulated results showed that the lower Seffcould get higher open circuit voltage (Voc), at the same time, the larger Rbcould get higher short-circuit current (Isc). Experimentally, we investigated the Seffand Rbthrough depositing Al paste with various amount (3.7, 5, 6, and 8 mg/cm2) for fabricating Al-BSF mono-silicon solar cells. Four group cells were characterized by light I-V, spectral response, hemispherical reflectance and scanning electron microscope (SEM) measurements. It was found that, a minimum Seffof 350 cm/s was gotten from the cells with Al paste of 8 mg/cm2, which was extracted by matching quantum efficiency (QE) from 800 nm to 1200 nm with PC1D, and a maximum Rbof 53.5% was obtained from Al paste of 5 mg/cm2by calculating at 1105 nm with PC1D. When the amount of Al paste was higher than 5mg/cm2, there were less Seffand lower Rb. On the other hand, when Al amount was 3.7mg/cm2, it was too little to form a closed BSF. Based on the SEM graphs and simulations with PC1D, a simple explaination was proposed for the experimental results.


1988 ◽  
Vol 63 (9) ◽  
pp. 4683-4687 ◽  
Author(s):  
Leendert A. Verhoef ◽  
Albert Zondervan ◽  
Fredrik A. Lindholm ◽  
Mark B. Spitzer ◽  
Christopher J. Keavney

2013 ◽  
Vol 205-206 ◽  
pp. 346-351 ◽  
Author(s):  
Ruy S. Bonilla ◽  
Christian Reichel ◽  
Martin Hermle ◽  
Peter R. Wilshaw

Effective reduction of front surface carrier recombination is essential for high efficiency silicon solar cells. Dielectric films are normally used to achieve such reduction. They provide a) an efficient passivation of surface recombination and b) an effective anti-reflection layer. The conditions that produce an effective anti-reflection coating are not necessarily the same for efficient passivation, hence both functions are difficult to achieve simultaneously and expensive processing steps are normally required. This can be overcome by enhancing the passivation properties of an anti-reflective film using the electric field effect. Here, we demonstrate that thermally grown silicon dioxide is an efficient passivation layer when chemically treated and electrically charged, and it is stable over a period of ten months. Double layers of SiO2 and SiN also provided stable and efficient passivation for a period of a year when the sample is submitted to a post-charge anneal. Surface recombination velocity upper limits of 9 cm/s and 19 cm/s were inferred for single and double layers respectively on n-type, 5 Ωcm, Cz-Si.


Sign in / Sign up

Export Citation Format

Share Document