A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector

2014 ◽  
Vol 121 ◽  
pp. 114-118 ◽  
Author(s):  
M. Karami ◽  
M.A. Akhavan Bahabadi ◽  
S. Delfani ◽  
A. Ghozatloo
2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Himanshu Tyagi ◽  
Patrick Phelan ◽  
Ravi Prasher

Due to its renewable and nonpolluting nature, solar energy is often used in applications such as electricity generation, thermal heating, and chemical processing. The most cost-effective solar heaters are of the “flat-plate” type, but these suffer from relatively low efficiency and outlet temperatures. The present study theoretically investigates the feasibility of using a nonconcentrating direct absorption solar collector (DAC) and compares its performance with that of a typical flat-plate collector. Here a nanofluid—a mixture of water and aluminum nanoparticles—is used as the absorbing medium. A two-dimensional heat transfer analysis was developed in which direct sunlight was incident on a thin flowing film of nanofluid. The effects of absorption and scattering within the nanofluid were accounted for. In order to evaluate the temperature profile and intensity distribution within the nanofluid, the energy balance equation and heat transport equation were solved numerically. It was observed that the presence of nanoparticles increases the absorption of incident radiation by more than nine times over that of pure water. According to the results obtained from this study, under similar operating conditions, the efficiency of a DAC using nanofluid as the working fluid is found to be up to 10% higher (on an absolute basis) than that of a flat-plate collector. Generally a DAC using nanofluids as the working fluid performs better than a flat-plate collector, however, much better designed flat-plate collectors might be able to match or outperform a nanofluids based DAC under certain conditions.


2015 ◽  
Vol 357 (1) ◽  
pp. 30-37 ◽  
Author(s):  
Hemant Kumar Gupta ◽  
Ghanshyam Das Agrawal ◽  
Jyotirmay Mathur

Author(s):  
P.G. Struchalin ◽  
V.S. Yunin ◽  
K.V. Kutsenko ◽  
O.V. Nikolaev ◽  
A.A. Vologzhannikova ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 285 ◽  
Author(s):  
M. Karim ◽  
Owen Arthur ◽  
Prasad Yarlagadda ◽  
Majedul Islam ◽  
Md Mahiuddin

Nanofluids have great potential in a wide range of fields including solar thermal applications, where molten salt nanofluids have shown great potential as a heat transfer fluid (HTF) for use in high temperature solar applications. However, no study has investigated the use of molten salt nanofluids as the HTF in direct absorption solar collector systems (DAC). In this study, a two dimensional CFD model of a direct absorption high temperature molten salt nanofluid concentrating solar receiver has been developed to investigate the effects design and operating variables on receiver performance. It has been found that the Carnot efficiency increases with increasing receiver length, solar concentration, increasing height and decreasing inlet velocity. When coupled to a power generation cycle, it is predicted that total system efficiency can exceed 40% when solar concentrations are greater than 100×. To impart more emphasis on the temperature rise of the receiver, an adjusted Carnot efficiency has been used in conjunction with the upper temperature limit of the nanofluid. The adjusted total efficiency also resulted in a peak efficiency for solar concentration, which decreased with decreasing volume fraction, implying that each receiver configuration has an optimal solar concentration.


Sign in / Sign up

Export Citation Format

Share Document