Discriminative training and explicit duration modeling for HMM-based automatic segmentation

2005 ◽  
Vol 47 (4) ◽  
pp. 397-410 ◽  
Author(s):  
Yi-Jian Wu ◽  
Hisashi Kawai ◽  
Jinfu Ni ◽  
Ren-Hua Wang
2010 ◽  
Vol 01 (05) ◽  
pp. 219-226 ◽  
Author(s):  
F. Beyer ◽  
B. Buerke ◽  
J. Gerss ◽  
K. Scheffe ◽  
M. Puesken ◽  
...  

SummaryPurpose: To distinguish between benign and malignant mediastinal lymph nodes in patients with NSCLC by comparing 2D and semiautomated 3D measurements in FDG-PET-CT.Patients, material, methods: FDG-PET-CT was performed in 46 patients prior to therapy. 299 mediastinal lymph-nodes were evaluated independently by two radiologists, both manually and by semi-automatic segmentation software. Longest-axial-diameter (LAD), shortest-axial-diameter (SAD), maximal-3D-diameter, elongation and volume were obtained. FDG-PET-CT and clinical/FDG-PET-CT follow up examinations and/or histology served as the reference standard. Statistical analysis encompassed intra-class-correlation-coefficients and receiver-operator-characteristics-curves (ROC). Results: The standard of reference revealed involvement in 87 (29%) of 299 lymph nodes. Manually and semi-automatically measured 2D parameters (LAD and SAD) showed a good correlation with mean


2015 ◽  
Vol 3 (3) ◽  
pp. 24-29
Author(s):  
Lekram Premlal Bahekar ◽  
◽  
Deepali Shende ◽  
Simran Kaur Digwa ◽  
◽  
...  

Author(s):  
Liang Kim Meng ◽  
Azira Khalil ◽  
Muhamad Hanif Ahmad Nizar ◽  
Maryam Kamarun Nisham ◽  
Belinda Pingguan-Murphy ◽  
...  

Background: Bone Age Assessment (BAA) refers to a clinical procedure that aims to identify a discrepancy between biological and chronological age of an individual by assessing the bone age growth. Currently, there are two main methods of executing BAA which are known as Greulich-Pyle and Tanner-Whitehouse techniques. Both techniques involve a manual and qualitative assessment of hand and wrist radiographs, resulting in intra and inter-operator variability accuracy and time-consuming. An automatic segmentation can be applied to the radiographs, providing the physician with more accurate delineation of the carpal bone and accurate quantitative analysis. Methods: In this study, we proposed an image feature extraction technique based on image segmentation with the fully convolutional neural network with eight stride pixel (FCN-8). A total of 290 radiographic images including both female and the male subject of age ranging from 0 to 18 were manually segmented and trained using FCN-8. Results and Conclusion: The results exhibit a high training accuracy value of 99.68% and a loss rate of 0.008619 for 50 epochs of training. The experiments compared 58 images against the gold standard ground truth images. The accuracy of our fully automated segmentation technique is 0.78 ± 0.06, 1.56 ±0.30 mm and 98.02% in terms of Dice Coefficient, Hausdorff Distance, and overall qualitative carpal recognition accuracy, respectively.


2020 ◽  
Vol 961 (7) ◽  
pp. 47-55
Author(s):  
A.G. Yunusov ◽  
A.J. Jdeed ◽  
N.S. Begliarov ◽  
M.A. Elshewy

Laser scanning is considered as one of the most useful and fast technologies for modelling. On the other hand, the size of scan results can vary from hundreds to several million points. As a result, the large volume of the obtained clouds leads to complication at processing the results and increases the time costs. One way to reduce the volume of a point cloud is segmentation, which reduces the amount of data from several million points to a limited number of segments. In this article, we evaluated effect on the performance, the accuracy of various segmentation methods and the geometric accuracy of the obtained models at density changes taking into account the processing time. The results of our experiment were compared with reference data in a form of comparative analysis. As a conclusion, some recommendations for choosing the best segmentation method were proposed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jared Hamwood ◽  
Beat Schmutz ◽  
Michael J. Collins ◽  
Mark C. Allenby ◽  
David Alonso-Caneiro

AbstractThis paper proposes a fully automatic method to segment the inner boundary of the bony orbit in two different image modalities: magnetic resonance imaging (MRI) and computed tomography (CT). The method, based on a deep learning architecture, uses two fully convolutional neural networks in series followed by a graph-search method to generate a boundary for the orbit. When compared to human performance for segmentation of both CT and MRI data, the proposed method achieves high Dice coefficients on both orbit and background, with scores of 0.813 and 0.975 in CT images and 0.930 and 0.995 in MRI images, showing a high degree of agreement with a manual segmentation by a human expert. Given the volumetric characteristics of these imaging modalities and the complexity and time-consuming nature of the segmentation of the orbital region in the human skull, it is often impractical to manually segment these images. Thus, the proposed method provides a valid clinical and research tool that performs similarly to the human observer.


Sign in / Sign up

Export Citation Format

Share Document