scholarly journals Can reduced tillage buffer the future climate warming effects on maize yield in different soil types of West Africa?

2021 ◽  
Vol 205 ◽  
pp. 104767
Author(s):  
Eeusha Nafi ◽  
Heidi Webber ◽  
Isaac Danso ◽  
Jesse B. Naab ◽  
Michael Frei ◽  
...  
2015 ◽  
Vol 6 (3) ◽  
pp. 596-614 ◽  
Author(s):  
Proloy Deb ◽  
Anthony S. Kiem ◽  
Mukand S. Babel ◽  
Sang Thi Chu ◽  
Biplab Chakma

This study evaluates the impacts of climate change on rainfed maize (Zea mays) yield and evaluates different agro-adaptation measures to counteract its negative impacts at Sikkim, a Himalayan state of India. Future climate scenarios for the 10 years centered on 2025, 2055 and 2085 were obtained by downscaling the outputs of the HadCM3 General Circulation Model (GCM) under for A2 and B2 emission scenarios. HadCM3 was chosen after assessing the performance analysis of six GCMs for the study region. The daily maximum and minimum temperatures are projected to rise in the future and precipitation is projected to decrease (by 1.7 to 22.6% relative to the 1991–2000 baseline) depending on the time period and scenarios considered. The crop simulation model CERES-Maize was then used to simulate maize yield under future climate change for the future time windows. Simulation results show that climate change could reduce maize productivity by 10.7–18.2%, compared to baseline yield, under A2 and 6.4–12.4% under B2 scenarios. However, the results also indicate that the projected decline in maize yield could be offset by early planting of seeds, lowering the farm yard manure application rate, introducing supplementary irrigation and shifting to heat tolerant varieties of maize.


Climate ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 35 ◽  
Author(s):  
Christiana Olusegun ◽  
Philip Oguntunde ◽  
Emiola Gbobaniyi

2018 ◽  
Vol 169 (3) ◽  
pp. 131-142 ◽  
Author(s):  
Yann Vitasse ◽  
Martine Rebetez ◽  
Sabine Augustin ◽  
Peter Brang

What future for silver fir in Switzerland under ongoing climate change? Foresters in many countries are currently seeking for the most suitable forest species or provenances for facing the future climate, which will be much warmer than today with more extreme summer droughts. While it is clear that some tree species will increasingly suffer from climate warming, the fate of silver fir (Abies alba Mill.) remains very uncertain because contradictory results have been published about the suitability of this species to cope with climate warming. On the one hand, species distribution models predict a strong decline of its climatic niche in the future. On the other hand, paleoecological studies reveal that this species was widely distributed under much warmer and probably drier climate, suggesting a high potential to face future climate warming. This literature survey shows that this species could actually grow under warmer conditions provided that precipitation remains sufficient, which seems to be the case for most regions of Switzerland according to climatic model predictions for the end of the century. In addition, dendroecological studies have shown a higher resistance and resilience of silver fir to drought compared to Norway spruce, suggesting that silver fir could be promoted by foresters. Nowadays, the greatest threat to silver fir is undoubtedly the browsing pressure by ungulates which can jeopardize its regeneration and must therefore be properly regulated to increase the proportion of silver fir in Swiss mixed forests.


2020 ◽  
Vol 163 (1) ◽  
pp. 267-296
Author(s):  
Rory G. J. Fitzpatrick ◽  
Douglas J. Parker ◽  
John H. Marsham ◽  
David P. Rowell ◽  
Lawrence S. Jackson ◽  
...  

AbstractCurrent-climate precipitation and temperature extremes have been identified by decision makers in West Africa as among the more impactful weather events causing lasting socioeconomic damage. In this article, we use a plausible future-climate scenario (RCP8.5) for the end of the twenty-first century to explore the relative commonness of such extremes under global warming. The analysis presented considers what a typical day in the future climate will feel like relative to current extrema. Across much of West Africa, we see that the typical future-climate day has maximum and minimum temperatures greater than 99.5% of currently experienced values. This finding exists for most months but is particularly pronounced during the Boreal spring and summer. The typical future precipitation event has a daily rainfall rate greater than 95% of current storms. These findings exist in both a future scenario model run with and without parameterised convection, and for many of the Coupled Model Inter-comparison Project version 5 ensemble members. Additionally, agronomic monsoon onset is projected to occur later and have greater inter-annual variability in the future. Our findings suggest far more extreme conditions in future climate over West Africa. The projected changes in temperature and precipitation could have serious socioeconomic implications, stressing the need for effective mitigation given the potential lack of adaptation pathways available to decision makers.


2018 ◽  
Vol 599 ◽  
pp. 253-266
Author(s):  
L Krüger ◽  
JM Pereira ◽  
I Ramírez ◽  
JA Ramos ◽  
VH Paiva

Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1541-1554 ◽  
Author(s):  
Christian Stranne ◽  
Matt O'Regan ◽  
Martin Jakobsson ◽  
Volker Brüchert ◽  
Marcelo Ketzer

Abstract. Assessments of future climate-warming-induced seafloor methane (CH4) release rarely include anaerobic oxidation of methane (AOM) within the sediments. Considering that more than 90 % of the CH4 produced in ocean sediments today is consumed by AOM, this may result in substantial overestimations of future seafloor CH4 release. Here, we integrate a fully coupled AOM module with a numerical hydrate model to investigate under what conditions rapid release of CH4 can bypass AOM and result in significant fluxes to the ocean and atmosphere. We run a number of different model simulations for different permeabilities and maximum AOM rates. In all simulations, a future climate warming scenario is simulated by imposing a linear seafloor temperature increase of 3 ∘C over the first 100 years. The results presented in this study should be seen as a first step towards understanding AOM dynamics in relation to climate change and hydrate dissociation. Although the model is somewhat poorly constrained, our results indicate that vertical CH4 migration through hydraulic fractures can result in low AOM efficiencies. Fracture flow is the predicted mode of methane transport under warming-induced dissociation of hydrates on upper continental slopes. Therefore, in a future climate warming scenario, AOM might not significantly reduce methane release from marine sediments.


Author(s):  
J. Macholdt ◽  
J. Glerup Gyldengren ◽  
E. Diamantopoulos ◽  
M. E. Styczen

Abstract One of the major challenges in agriculture is how climate change influences crop production, for different environmental (soil type, topography, groundwater depth, etc.) and agronomic management conditions. Through systems modelling, this study aims to quantify the impact of future climate on yield risk of winter wheat for two common soil types of Eastern Denmark. The agro-ecosystem model DAISY was used to simulate arable, conventional cropping systems (CSs) and the study focused on the three main management factors: cropping sequence, usage of catch crops and cereal straw management. For the case region of Eastern Denmark, the future yield risk of wheat does not necessarily increase under climate change mainly due to lower water stress in the projections; rather, it depends on appropriate management and each CS design. Major management factors affecting the yield risk of wheat were N supply and the amount of organic material added during rotations. If a CS is characterized by straw removal and no catch crop within the rotation, an increased wheat yield risk must be expected in the future. In contrast, more favourable CSs, including catch crops and straw incorporation, maintain their capacity and result in a decreasing yield risk over time. Higher soil organic matter content, higher net nitrogen mineralization rate and higher soil organic nitrogen content were the main underlying causes for these positive effects. Furthermore, the simulation results showed better N recycling and reduced nitrate leaching for the more favourable CSs, which provide benefits for environment-friendly and sustainable crop production.


2017 ◽  
Vol 113 (7/8) ◽  
Author(s):  
Abiodun A. Ogundeji ◽  
Henry Jordaan

Climate change and its impact on already scarce water resources are of global importance, but even more so for water scarce countries. Apart from the effect of climate change on water supply, the chill unit requirement of deciduous fruit crops is also expected to be affected. Although research on crop water use has been undertaken, researchers have not taken the future climate into consideration. They also have focused on increasing temperatures but failed to relate temperature to chill unit accumulation, especially in South Africa. With a view of helping farmers to adapt to climate change, in this study we provide information that will assist farmers in their decision-making process for adaptation and in the selection of appropriate cultivars of deciduous fruits. Crop water use and chill unit requirements are modelled for the present and future climate. Results show that, irrespective of the irrigation system employed, climate change has led to increases in crop water use. Water use with the drip irrigation system was lower than with sprinkler irrigation as a result of efficiency differences in the irrigation technologies. It was also confirmed that the accumulated chill units will decrease in the future as a consequence of climate change. In order to remain in production, farmers need to adapt to climate change stress by putting in place water resources and crop management plans. Thus, producers must be furnished with a variety of adaptation or management strategies to overcome the impact of climate change.


Sign in / Sign up

Export Citation Format

Share Document