scholarly journals A simulation study on the effect of climate change on crop water use and chill unit accumulation

2017 ◽  
Vol 113 (7/8) ◽  
Author(s):  
Abiodun A. Ogundeji ◽  
Henry Jordaan

Climate change and its impact on already scarce water resources are of global importance, but even more so for water scarce countries. Apart from the effect of climate change on water supply, the chill unit requirement of deciduous fruit crops is also expected to be affected. Although research on crop water use has been undertaken, researchers have not taken the future climate into consideration. They also have focused on increasing temperatures but failed to relate temperature to chill unit accumulation, especially in South Africa. With a view of helping farmers to adapt to climate change, in this study we provide information that will assist farmers in their decision-making process for adaptation and in the selection of appropriate cultivars of deciduous fruits. Crop water use and chill unit requirements are modelled for the present and future climate. Results show that, irrespective of the irrigation system employed, climate change has led to increases in crop water use. Water use with the drip irrigation system was lower than with sprinkler irrigation as a result of efficiency differences in the irrigation technologies. It was also confirmed that the accumulated chill units will decrease in the future as a consequence of climate change. In order to remain in production, farmers need to adapt to climate change stress by putting in place water resources and crop management plans. Thus, producers must be furnished with a variety of adaptation or management strategies to overcome the impact of climate change.

Author(s):  
J. Macholdt ◽  
J. Glerup Gyldengren ◽  
E. Diamantopoulos ◽  
M. E. Styczen

Abstract One of the major challenges in agriculture is how climate change influences crop production, for different environmental (soil type, topography, groundwater depth, etc.) and agronomic management conditions. Through systems modelling, this study aims to quantify the impact of future climate on yield risk of winter wheat for two common soil types of Eastern Denmark. The agro-ecosystem model DAISY was used to simulate arable, conventional cropping systems (CSs) and the study focused on the three main management factors: cropping sequence, usage of catch crops and cereal straw management. For the case region of Eastern Denmark, the future yield risk of wheat does not necessarily increase under climate change mainly due to lower water stress in the projections; rather, it depends on appropriate management and each CS design. Major management factors affecting the yield risk of wheat were N supply and the amount of organic material added during rotations. If a CS is characterized by straw removal and no catch crop within the rotation, an increased wheat yield risk must be expected in the future. In contrast, more favourable CSs, including catch crops and straw incorporation, maintain their capacity and result in a decreasing yield risk over time. Higher soil organic matter content, higher net nitrogen mineralization rate and higher soil organic nitrogen content were the main underlying causes for these positive effects. Furthermore, the simulation results showed better N recycling and reduced nitrate leaching for the more favourable CSs, which provide benefits for environment-friendly and sustainable crop production.


Author(s):  
K. Lin ◽  
W. Zhai ◽  
S. Huang ◽  
Z. Liu

Abstract. The impact of future climate change on the runoff for the Dongjiang River basin, South China, has been investigated with the Soil and Water Assessment Tool (SWAT). First, the SWAT model was applied in the three sub-basins of the Dongjiang River basin, and calibrated for the period of 1970–1975, and validated for the period of 1976–1985. Then the hydrological response under climate change and land use scenario in the next 40 years (2011–2050) was studied. The future weather data was generated by using the weather generators of SWAT, based on the trend of the observed data series (1966–2005). The results showed that under the future climate change and LUCC scenario, the annual runoff of the three sub-basins all decreased. Its impacts on annual runoff were –6.87%, –6.54%, and –18.16% for the Shuntian, Lantang, and Yuecheng sub-basins respectively, compared with the baseline period 1966–2005. The results of this study could be a reference for regional water resources management since Dongjiang River provides crucial water supplies to Guangdong Province and the District of Hong Kong in China.


2019 ◽  
Vol 20 (2) ◽  
pp. 679-687 ◽  
Author(s):  
Angelos Alamanos ◽  
Stamatis Sfyris ◽  
Chrysostomos Fafoutis ◽  
Nikitas Mylopoulos

Abstract The relationship between water abstraction and water availability has turned into a major stress factor in the urban exploitation of water resources. The situation is expected to be sharpened in the future due to the intensity of extreme meteorological phenomena, and socio-economic changes affecting water demand. In the city of Volos, Greece, the number of water counters has been tripled during the last four decades. This study attempts to simulate the city's network, supply system and water demand through a forecasting model. The forecast was examined under several situations, based on climate change and socio-economic observations of the city, using meteorological, water pricing, users' income, level of education, family members, floor and residence size variables. The most interesting outputs are: (a) the impact of each variable in the water consumption and (b) water balance under four management scenarios, indicating the future water management conditions of the broader area, including demand and supply management. The results proved that rational water management can lead to remarkable water conservation. The simulation of real scenarios and future situations in the city's water demand and balance, is the innovative element of the study, making it capable of supporting the local water utility.


2014 ◽  
Vol 9 (4) ◽  
pp. 432-442 ◽  
Author(s):  
Nobuhiko Sawai ◽  
◽  
Kenichiro Kobayashi ◽  
Apip ◽  
Kaoru Takara ◽  
...  

This paper assesses the impact of climate change in the Black Volta River by using data output from the atmospheric general circulation model with a 20-km resolution (AGCM20) through the Japanese Meteorological Agency (JMA) and the Meteorological Research Institute (MRI). The Black Volta, which flows mainly in Burkina Faso and Ghana in West Africa, is a major tributary of the Volta River. The basin covers 142,056 km2 and has a semi-arid tropical climate. Before applying AGCM20 output to a rainfall–runoff model, the performance of the AGCM20 rainfall data is investigated by comparing it with the observed rainfall in the Black Volta Basin. To assess the possible impact of rainfall change on river flow, a kinematic wave model, which takes into consideration saturated and unsaturated subsurface soil zones, was performed. The rainfall analysis shows that, the correlation coefficient of the monthly rainfall between the observed rainfall and AGCM20 for the present climate (1979–2004) is 0.977. In addition, the analysis shows that AGCM20 overestimates precipitation during the rainy season and underestimates the dry season for the present climate. The analysis of the AGCM20 output shows the precipitation pattern change in the future (2075–2099). In the future, precipitation is expected to increase by 3%, whereas evaporation and transpiration are expected to increase by 5% and by 8%, respectively. Also, daily maximum rainfall is expected to be 20 mm, or 60%, higher. Thus, the future climate in this region is expected to be more severe. The rainfall–runoff simulation is successfully calibrated at the Bamboi discharge gauging station in the Black Volta fromJune 2000 to December 2000 with 0.72 of the Nash–Sutcliffe model efficiency index. The model is applied with AGCM20 outputs for the present climate (1979–2004) and future climate (2075–2099). The results indicate that future discharge will decrease from January to July at the rate of the maximum of 50% and increase fromAugust to December at the rate of the maximumof 20% in the future. Therefore, comprehensive planning for both floods and droughts are urgently needed in this region.


Author(s):  
zhen wang ◽  
Meixue Yang ◽  
xuejia wang ◽  
lizhen cheng ◽  
guoning wan ◽  
...  

Climate changes may pose challenges to water management. Simulation and projection of climate-runoff processes through hydrological models are essential means to assess the impact of global climate change on runoff variations. This study focuses on the upper Taohe River Basin which is an important water sources for arid and semi-arid regions in Northwest China. In order to assess the impacts of environmental changes, outputs from a regional climate model and the SWAT hydrological model were used to analyze the future climate change scenarios to water resources quantitatively. The examined climate changes scenarios results showed that average annual temperature from 2020 to 2099 in this area exhibits a consistent warming trend with different warming rates, at rates of 0.10°C/10a, 0.20°C /10a and 0.54°C /10a under RCP2.6, RCP4.5 and RCP8.5(Representative Concentration Pathways, RCPs), The value of precipitation experiences different trends under different emission scenarios. Under the RCP2.6, average precipitation would decrease at a rate of 3.69 mm/10a, while under the RCP4.5 and RCP8.5, it would increase at rates of 4.97 mm/10a and 12.28 mm/10a, respectively. The calibration and validation results in three in-site observations (Luqu, Xiabagou and Minxian) in the upper Taohe River Basin showed that SWAT hydrological model is able to produce an acceptable simulation of runoff at monthly time-step. In response to future climate changes, projected runoff change would present different decreasing trends. Under RCP2.6, annual average runoff would experience a progress of fluctuating trend, with a rate of-0.6×108m3 by 5-year moving average method; Under the RCP4.5 and RCP8.5, annual average runoff would show steadily increasing trends, with rates of 0.23×108m3 and 0.16×108m3 by 5-year moving average method. The total runoff in the future would prone to drought and flood disasters. Overall, this research results would provide a scientific reference for reginal water resources management on the long term.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2516
Author(s):  
Yoonji Kim ◽  
Jieun Yu ◽  
Kyungil Lee ◽  
Hye In Chung ◽  
Hyun Chan Sung ◽  
...  

Highly concentrated precipitation during the rainy season poses challenges to the South Korean water resources management in efficiently storing and redistributing water resources. Under the new climate regime, water resources management is likely to become more challenging with regards to water-related disaster risk and deterioration of water quality. To alleviate such issues by adjusting management plans, this study examined the impact of climate change on the streamflow in the Bocheongcheon basin of the Geumgang river. A globally accepted hydrologic model, the HEC-HMS model, was chosen for the simulation. By the calibration and the validation processes, the model performance was evaluated to range between “satisfactory” and “very good”. The calibrated model was then used to simulate the future streamflow over six decades from 2041 to 2100 under RCP4.5 and RCP8.5. The results indicated significant increase in the future streamflow of the study site in all months and seasons over the simulation period. Intensification of seasonal differences and fluctuations was projected under RCP 8.5, implying a challenge for water resources managers to secure stable sources of clean water and to prevent water-related disasters. The analysis of the simulation results was applied to suggest possible local adaptive water resources management policy.


Author(s):  
R. Quentin Grafton ◽  
Long Chu ◽  
Paul Wyrwoll

Water insecurity poses threats to both human welfare and ecological systems. Global water abstractions (extractions) have increased threefold over the period 1960–2010, and an increasing trend in abstractions is expected to continue. Rising water use is placing significant pressure on water resources, leading to depletion of surface and underground water systems, and exposing up to 4 billion people to high levels of seasonal or persistent water insecurity. Climate change is deepening the risks of water scarcity by increasing rainfall variability. By the 2050s, the water–climate change challenge could cause an additional 620 million people to live with chronic water shortage and increase by 75% the proportion of cropland exposed to drought. While there is no single solution to water scarcity or water justice, increasing the benefits of water use through better planning and incentives can help. Pricing is an effective tool to regulate water consumption for irrigation, for residential uses, and especially in response to droughts. For a water allocation to be efficient, the water price paid by users should be equal to the marginal economic cost of water supply. Accounting for all costs of supply is important even though, in practice, water prices are typically set to meet a range of social and political objectives. Dynamic water pricing provides a tool for increasing allocative efficiency in short-term water allocation and the long-term planning of water resources. A dynamic relationship exists between water consumption at a point in time and water scarcity in the future. Thus, dynamic water pricing schemes may take into account the benefit of consuming water at that time and also the water availability that could be used should a drought occur in the future. Dynamic water pricing can be applied with the risk-adjusted user cost (RAUC), which measures the risk impact of current water consumption on the welfare of future water users.


2020 ◽  
Author(s):  
Jing Tian ◽  
Shenglian Guo ◽  
Chong-Yu Xu

<p>As a link between the atmosphere and the earth’s surface, the hydrological cycle is impacted by both climate change and land use/cover change (LUCC). For most basins around the world, the co-variation of climate change and LUCC will continue in the future, which highlights the significance to explore the temporal-spatial distribution and variation mechanism of runoff and to improve our ability in water resources planning and management. Therefore, the purpose of this study is to propose a framework to examine the response of runoff to climate change and LUCC under different future scenarios. Firstly, the future climate scenarios under BCC-CSM1.1 and BNU-ESM are both downscaled and bias-corrected by the Daily bias correction (DBC) method, meanwhile, the future LUCC scenarios are predicted by the Cellular Automaton-Markov (CA-Markov) model according to the integrated basin plans of future land use. Then, based on the baseline scenario S0 (meteorological data from 1966 to 2005 and current situation LUCC2010), the following three scenarios are set with different combinations of future climate land-use situations, i.e., S1: only climate change scenario; S2: only the LUCC scenario; S3: climate and LUCC co-variation scenario. Lastly, the Soil and Water Assessment Tool (SWAT) model is used to simulate the hydrological process and quantify the impacts of climate change and LUCC on the runoff yield. The proposed framework is applied to the Han River basin in China. Results show that: (1) compared with the base period (1966-2005), the annual rainfall, daily maximum, and minimum air temperature during 2021-2060 will have an increase of 4.0%, 1.8℃, 1.6℃ in RCP4.5 while 3.7%, 2.5℃, 2.3℃ in RCP8.5, respectively; (2) from 2010 to 2050, the forest land and construction land in the Han River basin will have an increase of 2.8% and 1.2%, respectively, while that of farmland and grassland will have a decrease of 1.5% and 2.5%, respectively; (3) comparing with the single climate change or LUCC scenario, the co-variation scenario possesses the largest uncertainty in runoff projection. Under the two concentration paths, there is a consistent upward change in future runoff (2021-2060) of the studied basin compared with that in the base period, furthermore, the increase rate in RCP4.5 (+5.10%) is higher than that in RCP8.5 (+2.67%). The results of this study provide a useful reference and help for water resources and land use management in the Han River basin.</p>


2019 ◽  
Vol 11 (2) ◽  
pp. 341-366 ◽  
Author(s):  
Hashim Isam Jameel Al-Safi ◽  
Hamideh Kazemi ◽  
P. Ranjan Sarukkalige

Abstract The application of two distinctively different hydrologic models, (conceptual-HBV) and (distributed-BTOPMC), was compared to simulate the future runoff across three unregulated catchments of the Australian Hydrologic Reference Stations (HRSs), namely Harvey catchment in WA, and Beardy and Goulburn catchments in NSW. These catchments have experienced significant runoff reduction during the last decades due to climate change and human activities. The Budyko-elasticity method was employed to assign the influences of human activities and climate change on runoff variations. After estimating the contribution of climate change in runoff reduction from the past runoff regime, the downscaled future climate signals from a multi-model ensemble of eight global climate models (GCMs) of the Coupled Model Inter-comparison Project phase-5 (CMIP5) under the Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 scenarios were used to simulate the future daily runoff at the three HRSs for the mid-(2046–2065) and late-(2080–2099) 21st-century. Results show that the conceptual model performs better than the distributed model in capturing the observed streamflow across the three contributing catchments. The performance of the models was relatively compatible in the overall direction of future streamflow change, regardless of the magnitude, and incompatible regarding the change in the direction of high and low flows for both future climate scenarios. Both models predicted a decline in wet and dry season's streamflow across the three catchments.


Sign in / Sign up

Export Citation Format

Share Document