scholarly journals How will future climate depending agronomic management impact the yield risk of wheat cropping systems? A regional case study of Eastern Denmark

Author(s):  
J. Macholdt ◽  
J. Glerup Gyldengren ◽  
E. Diamantopoulos ◽  
M. E. Styczen

Abstract One of the major challenges in agriculture is how climate change influences crop production, for different environmental (soil type, topography, groundwater depth, etc.) and agronomic management conditions. Through systems modelling, this study aims to quantify the impact of future climate on yield risk of winter wheat for two common soil types of Eastern Denmark. The agro-ecosystem model DAISY was used to simulate arable, conventional cropping systems (CSs) and the study focused on the three main management factors: cropping sequence, usage of catch crops and cereal straw management. For the case region of Eastern Denmark, the future yield risk of wheat does not necessarily increase under climate change mainly due to lower water stress in the projections; rather, it depends on appropriate management and each CS design. Major management factors affecting the yield risk of wheat were N supply and the amount of organic material added during rotations. If a CS is characterized by straw removal and no catch crop within the rotation, an increased wheat yield risk must be expected in the future. In contrast, more favourable CSs, including catch crops and straw incorporation, maintain their capacity and result in a decreasing yield risk over time. Higher soil organic matter content, higher net nitrogen mineralization rate and higher soil organic nitrogen content were the main underlying causes for these positive effects. Furthermore, the simulation results showed better N recycling and reduced nitrate leaching for the more favourable CSs, which provide benefits for environment-friendly and sustainable crop production.

2017 ◽  
Vol 113 (7/8) ◽  
Author(s):  
Abiodun A. Ogundeji ◽  
Henry Jordaan

Climate change and its impact on already scarce water resources are of global importance, but even more so for water scarce countries. Apart from the effect of climate change on water supply, the chill unit requirement of deciduous fruit crops is also expected to be affected. Although research on crop water use has been undertaken, researchers have not taken the future climate into consideration. They also have focused on increasing temperatures but failed to relate temperature to chill unit accumulation, especially in South Africa. With a view of helping farmers to adapt to climate change, in this study we provide information that will assist farmers in their decision-making process for adaptation and in the selection of appropriate cultivars of deciduous fruits. Crop water use and chill unit requirements are modelled for the present and future climate. Results show that, irrespective of the irrigation system employed, climate change has led to increases in crop water use. Water use with the drip irrigation system was lower than with sprinkler irrigation as a result of efficiency differences in the irrigation technologies. It was also confirmed that the accumulated chill units will decrease in the future as a consequence of climate change. In order to remain in production, farmers need to adapt to climate change stress by putting in place water resources and crop management plans. Thus, producers must be furnished with a variety of adaptation or management strategies to overcome the impact of climate change.


Author(s):  
K. Lin ◽  
W. Zhai ◽  
S. Huang ◽  
Z. Liu

Abstract. The impact of future climate change on the runoff for the Dongjiang River basin, South China, has been investigated with the Soil and Water Assessment Tool (SWAT). First, the SWAT model was applied in the three sub-basins of the Dongjiang River basin, and calibrated for the period of 1970–1975, and validated for the period of 1976–1985. Then the hydrological response under climate change and land use scenario in the next 40 years (2011–2050) was studied. The future weather data was generated by using the weather generators of SWAT, based on the trend of the observed data series (1966–2005). The results showed that under the future climate change and LUCC scenario, the annual runoff of the three sub-basins all decreased. Its impacts on annual runoff were –6.87%, –6.54%, and –18.16% for the Shuntian, Lantang, and Yuecheng sub-basins respectively, compared with the baseline period 1966–2005. The results of this study could be a reference for regional water resources management since Dongjiang River provides crucial water supplies to Guangdong Province and the District of Hong Kong in China.


2014 ◽  
Vol 9 (4) ◽  
pp. 432-442 ◽  
Author(s):  
Nobuhiko Sawai ◽  
◽  
Kenichiro Kobayashi ◽  
Apip ◽  
Kaoru Takara ◽  
...  

This paper assesses the impact of climate change in the Black Volta River by using data output from the atmospheric general circulation model with a 20-km resolution (AGCM20) through the Japanese Meteorological Agency (JMA) and the Meteorological Research Institute (MRI). The Black Volta, which flows mainly in Burkina Faso and Ghana in West Africa, is a major tributary of the Volta River. The basin covers 142,056 km2 and has a semi-arid tropical climate. Before applying AGCM20 output to a rainfall–runoff model, the performance of the AGCM20 rainfall data is investigated by comparing it with the observed rainfall in the Black Volta Basin. To assess the possible impact of rainfall change on river flow, a kinematic wave model, which takes into consideration saturated and unsaturated subsurface soil zones, was performed. The rainfall analysis shows that, the correlation coefficient of the monthly rainfall between the observed rainfall and AGCM20 for the present climate (1979–2004) is 0.977. In addition, the analysis shows that AGCM20 overestimates precipitation during the rainy season and underestimates the dry season for the present climate. The analysis of the AGCM20 output shows the precipitation pattern change in the future (2075–2099). In the future, precipitation is expected to increase by 3%, whereas evaporation and transpiration are expected to increase by 5% and by 8%, respectively. Also, daily maximum rainfall is expected to be 20 mm, or 60%, higher. Thus, the future climate in this region is expected to be more severe. The rainfall–runoff simulation is successfully calibrated at the Bamboi discharge gauging station in the Black Volta fromJune 2000 to December 2000 with 0.72 of the Nash–Sutcliffe model efficiency index. The model is applied with AGCM20 outputs for the present climate (1979–2004) and future climate (2075–2099). The results indicate that future discharge will decrease from January to July at the rate of the maximum of 50% and increase fromAugust to December at the rate of the maximumof 20% in the future. Therefore, comprehensive planning for both floods and droughts are urgently needed in this region.


2019 ◽  
Vol 11 (2) ◽  
pp. 341-366 ◽  
Author(s):  
Hashim Isam Jameel Al-Safi ◽  
Hamideh Kazemi ◽  
P. Ranjan Sarukkalige

Abstract The application of two distinctively different hydrologic models, (conceptual-HBV) and (distributed-BTOPMC), was compared to simulate the future runoff across three unregulated catchments of the Australian Hydrologic Reference Stations (HRSs), namely Harvey catchment in WA, and Beardy and Goulburn catchments in NSW. These catchments have experienced significant runoff reduction during the last decades due to climate change and human activities. The Budyko-elasticity method was employed to assign the influences of human activities and climate change on runoff variations. After estimating the contribution of climate change in runoff reduction from the past runoff regime, the downscaled future climate signals from a multi-model ensemble of eight global climate models (GCMs) of the Coupled Model Inter-comparison Project phase-5 (CMIP5) under the Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 scenarios were used to simulate the future daily runoff at the three HRSs for the mid-(2046–2065) and late-(2080–2099) 21st-century. Results show that the conceptual model performs better than the distributed model in capturing the observed streamflow across the three contributing catchments. The performance of the models was relatively compatible in the overall direction of future streamflow change, regardless of the magnitude, and incompatible regarding the change in the direction of high and low flows for both future climate scenarios. Both models predicted a decline in wet and dry season's streamflow across the three catchments.


Author(s):  
Pedram Mahdavi ◽  
Hossein Ghorbanizadeh Kharazi ◽  
Hossein Eslami ◽  
Narges Zohrabi ◽  
Majid Razaz

Abstract Global warming affected by human activities causes changes in the regime of rivers. Rivers are one of the most vital sources that supply fresh water. Therefore, management, planning, and proper use of rivers will be crucial for future climate change conditions. This study investigated the monitoring of hydrological drought in a future period to examine the impact of climate change on the discharging flow of the Zard River basin in Iran. Zard River is an important supplier of fresh and agricultural water in a vast area of Khuzestan province in Iran. A continuous rainfall-runoff model based on Soil Moisture Accounting (SMA) algorithm was applied to simulate the discharge flow under 10 scenarios (obtained from LARS-WG.6 software) of future climate change. Then, the Stream-flow Drought Index (SDI) and the Standard Precipitation Index (SPI) were calculated for each climate change scenario for the future period (2041–2060). The results of the meteorological drought assessment showed that near normal and moderate droughts had higher proportions among other drought conditions. Moreover, the hydrological drought assessment showed the occurrence of two new droughts (severe and extreme) conditions for the future period (2041–2060) that has never happened in the past (1997–2016).


2021 ◽  
Vol 13 (19) ◽  
pp. 10495
Author(s):  
Zoia Arshad Awan ◽  
Tasneem Khaliq ◽  
Muhammad Masood Akhtar ◽  
Asad Imran ◽  
Muhammad Irfan ◽  
...  

Cotton production is highly vulnerable to climate change, and heat stress is a major constraint in the cotton zone of Punjab, Pakistan. Adaptation is perceived as a critical step to deal with forecasted and unexpected climatic conditions. The objective of this study was to standardize and authenticate a cotton crop model based on climate and crop husbandry data in order to develop an adaptation package for cotton crop production in the wake of climate change. For the study, the data were collected from the cotton-growing areas of Punjab, viz. Bahawalpur and Khanewal. After the calibration and validation against field data, the Cropping System Model CSM–CROPGRO–Cotton in the shell of the decision support system for agro-technology transfer (DSSAT) was run with a future climate generated under two representative concentrations pathways (RCPs), viz. RCPs 4.5 and 8.5 with five global circulation models (GCMs). The whole study showed that a model is an artistic tool for examining the temporal variation in cotton and determining the potential impact of planting dates on crop growth, phenology, and yield. The results showed that the future climate would have drastic effects on cotton production in the project area. Reduction in seed cotton yield (SCY) was 25.7% and 32.2% under RCPs 4.5 and 8.5, respectively. The comparison of five GCMs showed that a hot/wet climate would be more damaging than other scenarios. The simulations with different production options showed that a 10% and 5% increase in nitrogen and plant population, respectively, compared to the present would be the best strategy in the future. The model further suggested that planting conducted 15 days earlier, combined with the use of water and nitrogen (fertigation), would help to improve yield with 10% less water under the future climate. Overall, the proposed adaptation package would help to recover 33% and 37% of damages in SCY due to the climate change scenarios of RCP 4.5 and 8.5, respectively. Furthermore, the proposed package would also help the farmers increase crop yield by 7.5% over baseline (current) yield.


Italus Hortus ◽  
2020 ◽  
Vol 27 ◽  
pp. 1-1
Author(s):  
Boris Basile ◽  
Hilary Rogers ◽  
Youssef Rouphael

Horticulture, as one of the main agricultural pillars, plays a leading role in the 2030 Agenda for Sustainable Development currently adopted by the United Nations. Wellbalanced but creative and far-sighted models for the future of the horticultural sector are needed to assure food security, decrease poverty, counteract environmental degradation and combat climate change. During the last few decades, the international horticultural scientific community has produced a large body of research aiming to support the development of this critical agricultural sector. Italus Hortus (IH) aims to contribute to this challenging goal, covering all aspects of horticulture where a science-based innovation is possible and required. One of these aspects is the definition of innovative cultivation strategies and post-harvest technologies to allow yield stability and quality improvement. The latter includes also the design of cultivation models that by increasing the resilience of the horticultural crops, can mitigate the impact of climate change on the quantitative and qualitative yield performance of the cultivations. At the same time, horticulture will become one of the main actors of a more circular and climate-neutral economy. Increasing attention will be given to the study of cultivation strategies that can help to reduce soil degradation, and the negative effects of current horticultural management on the environment (smart and efficient use of the required inputs, introduction of environmentally-friendly biodegradable plastics, etc.). Some of these goals will be also achieved by increasing the technological level of agriculture including integrating modeling, proximal/remote sensing, mechanization/automation/robotics, mapping, geomatics, decision making, and/or statistics to define a more precise and smart horticulture. In addition, our scientific community will play a major role in supporting the research of innovative cropping systems, such as vertical farming and other solutions useful for the development of urban greening/agriculture (vertical gardens) and/or space farming. As new Editors of Italus Hortus, we are fully aware of the large volume of new sciencebased insights that the horticultural sector is eager for. We are enthusiastically committed to facilitating its dissemination and we will work to make Italus Hortus play a significant role in defining the horticulture of the future. We would like to take this opportunity to thank the former Editor-in-chief, Prof. Paolo Inglese, the former and current Editorial Boards, and all the paper authors and reviewers for the outstanding job they have done so far or they will do in the future.


2021 ◽  
Author(s):  
Corey Lesk ◽  
Ethan Coffel ◽  
Jonathan Winter ◽  
Deepak Ray ◽  
Jakob Zscheischler ◽  
...  

<p><strong>Rising air temperatures are a leading risk to global crop production and food security under climate change</strong><strong>. Recent research has emphasized the critical role of moisture availability in regulating crop responses to heat</strong><strong> and the importance of temperature-moisture couplings in the genesis of concurrent hot and dry conditions</strong><strong>. Here, we demonstrate that the heat sensitivity of key global crops is dependent on the local strength of couplings between temperature and moisture in the climate system (namely, the interannual correlations of growing season temperature with evapotransipration and precipitation). Over 1970-2013, maize and soy yields declined more during hotter growing seasons where decreased precipitation and evapotranspiration more strongly accompanied higher temperatures. Based on this historical pattern and a suite of CMIP6 climate model projections, we show that changes in temperature-moisture couplings in response to warming could enhance the heat sensitivity of these crops as temperatures rise, worsening the impact of warming by ~5% on global average. However, these changes will benefit crops in some areas where couplings weaken, and are highly uncertain in others. Our results demonstrate that climate change will impact crops not only through warming, but also through changes in temperature-moisture couplings, which may alter the sensitivity of crop yields to heat as warming proceeds. Robust adaptation of cropping systems will need to consider this underappreciated risk to food production from climate change.</strong></p>


2007 ◽  
Vol 11 (3) ◽  
pp. 1115-1126 ◽  
Author(s):  
H. J. Fowler ◽  
C. G. Kilsby ◽  
J. Stunell

Abstract. Over the last two decades, the frequency of water resource drought in the UK, coupled with the more recent pan-European drought of 2003, has increased concern over changes in climate. Using the UKCIP02 Medium-High (SRES A2) scenario for 2070–2100, this study investigates the impact of climate change on the operation of the Integrated Resource Zone (IRZ), a complex conjunctive-use water supply system in north-western England. The results indicate that the contribution of individual sources to yield may change substantially but that overall yield is reduced by only 18%. Notwithstanding this significant effect on water supply, the flexibility of the system enables it to meet modelled demand for much of the time under the future climate scenario, even without a change in system management, but at significant expense for pumping additional abstraction from lake and borehole sources. This research provides a basis for the future planning and management of the complex water resource system in the north-west of England.


2021 ◽  
Author(s):  
Andrej Ceglar ◽  
Andrea Toreti ◽  
Matteo Zampieri ◽  
Conxita Royo

<p>Durum wheat (<em>Triticum durum Desf.</em>) is a minor cereal crop of key importance for making pasta, couscous, puddings, bread, and many other traditional foods, due to its physical and chemical characteristics. Durum wheat currently represents around 8% of the total wheat crop production, with the main cultivation region being concentrated in few suitable areas such as the Mediterranean Basin, the North American Great Plains, and the former USSR. The global demand for high-quality food made of durum wheat has been increasing, which poses a challenge in the face of climate change. The major share of durum wheat production is currently located in semi-arid climates, where the risk of climate extremes such as drought and heat stress will likely substantially increase in the future. </p><p>We develop a global climate suitability model for durum wheat growth based on Support Vector Machines. We use CMIP6 data to assess the impact of climate change on future suitability for growing durum wheat globally. The total share of global arable land, climatically suitable for growing rainfed durum wheat, currently represents roughly 13% of the global arable land. However, climate change may decrease this suitable area of 19% by mid-century and of 48% by the end of the century, considering also the gain of suitable land areas, where durum wheat is not cultivated today. This net loss of suitable areas requires the development and the future adoption of effective and sustainable strategies to stabilize production and adapt the entire food supply chain.</p>


Sign in / Sign up

Export Citation Format

Share Document