Carvone-loaded LDPE films for active packaging: Effect of supercritical CO2-assisted impregnation on loading, mechanical and transport properties of the films

2018 ◽  
Vol 133 ◽  
pp. 278-290 ◽  
Author(s):  
María L. Goñi ◽  
Nicolás A. Gañán ◽  
Raquel E. Martini ◽  
Alfonsina E. Andreatta
Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3968
Author(s):  
Carolina Villegas ◽  
Alejandra Torres ◽  
Julio Bruna ◽  
María Ignacia Bustos ◽  
Alvaro Díaz-Barrera ◽  
...  

Bionanocomposites based on Polylactide (PLA) and Polyhydroxybutyrate (PHB) blends were successfully obtained through a combined extrusion and impregnation process using supercritical CO2 (scCO2). Graphene oxide (GO) and cinnamaldehyde (Ci) were incorporated into the blends as nano-reinforcement and an active compound, respectively, separately, and simultaneously. From the results, cinnamaldehyde quantification values varied between 5.7% and 6.1% (w/w). When GO and Ci were incorporated, elongation percentage increased up to 16%, and, therefore, the mechanical properties were improved, with respect to neat PLA. The results indicated that the Ci diffusion through the blends and bionanocomposites was influenced by the nano-reinforcing incorporation. The disintegration capacity of the developed materials decreased with the incorporation of GO and PHB, up to 14 and 23 days of testing, respectively, without compromising the biodegradability characteristics of the final material.


2003 ◽  
Vol 766 ◽  
Author(s):  
R.F. Reidy ◽  
Zhengping Zhang ◽  
R.A. Orozco-Teran ◽  
B.P. Gorman ◽  
D.W. Mueller

AbstractFuture interlayer dielectric (ILD) requirements necessitate reductions in dielectric constant to 2.1 within four years. Due to gaseous-like transport properties and near liquid-like densities, supercritical methods have been developed to dry and strip resist from these highly porous materials. Although a non-polar molecule, the solvating capability of supercritical CO2 (SCCO2) can be tailored by varying pressure, temperature, and co-solvents. This flexibility has been employed to remove photoresist and moisture from porous low-k films. The results of these experiments have been characterized using FTIR, ellipsometry, and SEM.


2019 ◽  
Vol 34 ◽  
pp. 266-273 ◽  
Author(s):  
Paola Franco ◽  
Loredana Incarnato ◽  
Iolanda De Marco

Author(s):  
Marali Vilela Dias ◽  
Viviane Machado Azevedo ◽  
Laura Fonseca Ferreira ◽  
Ana Carolina Salgado Oliveira ◽  
Soraia Vilela Borges ◽  
...  

1988 ◽  
Vol 102 ◽  
pp. 165-174
Author(s):  
C. de Michelis

AbstractImpurities being an important concern in tokamaks, spectroscopy plays a key role in their understanding. Techniques for the evaluation of concentrations, power losses and transport properties are surveyed, and a few developments are outlined.


Author(s):  
Alain Claverie ◽  
Zuzanna Liliental-Weber

GaAs layers grown by MBE at low temperatures (in the 200°C range, LT-GaAs) have been reported to have very interesting electronic and transport properties. Previous studies have shown that, before annealing, the crystalline quality of the layers is related to the growth temperature. Lowering the temperature or increasing the layer thickness generally results in some columnar polycrystalline growth. For the best “temperature-thickness” combinations, the layers may be very As rich (up to 1.25%) resulting in an up to 0.15% increase of the lattice parameter, consistent with the excess As. Only after annealing are the technologically important semi-insulating properties of these layers observed. When annealed in As atmosphere at about 600°C a decrease of the lattice parameter to the substrate value is observed. TEM studies show formation of precipitates which are supposed to be As related since the average As concentration remains almost unchanged upon annealing.


Sign in / Sign up

Export Citation Format

Share Document