scholarly journals An increase in circulating B cells and B cell activation markers in peripheral blood is associated with cigarette smoking in a male cohort in Bangladesh

2019 ◽  
Vol 384 ◽  
pp. 114783
Author(s):  
Scott W. Burchiel ◽  
Fredine T. Lauer ◽  
Pam Factor-Litvak ◽  
Xinhua Liu ◽  
Regina M. Santella ◽  
...  
Blood ◽  
1997 ◽  
Vol 89 (4) ◽  
pp. 1299-1307 ◽  
Author(s):  
Hideya Igarashi ◽  
Nobuo Sakaguchi

Abstract To understand the molecular events for the proliferation of B cells, we studied the induction of telomerase activity in vitro after stimulation to B-cell antigen receptor (BCR) on human peripheral B cells. Although unstimulated purified B cells of tonsils and peripheral blood from healthy volunteers do not express detectable telomerase activity, anti-IgM beads induce telomerase activity in these B cells. Soluble anti-IgM antibody (Ab) alone does not induce telomerase activity, but the second signal, given by either one of the cytokines of interleukin-2 (IL-2), IL-4, and IL-13 or by anti-CD40 monoclonal Ab (MoAb), is effective as the costimulation for the induction of the activity. Stimulation with antiIgM Ab and anti-CD40 MoAb induces telomerase activity in most mature B cells of the tonsils and peripheral blood. The stimuli to both IgM and IgD receptors similarly induce the activity. Induction of telomerase activity is accompanied with the proliferation of B cells, but is not absolutely correlated with the extent of B-cell growth. Phorbol dibutylate (PDB) plus calcium (Ca) ionophore (PDB/Ca), which replace the activation through BCR and the costimulatory molecules, also induce telomerase activity. Moreover, it is suggested that phosphoinositide (PI) 3-kinase plays a role for the induction of telomerase activity in B cells stimulated with anti-IgM Ab and anti-CD40 MoAb. These results suggest that telomerase activity is induced in the B-cell activation of the antigen specific immune response.


1983 ◽  
Vol 157 (1) ◽  
pp. 1-14 ◽  
Author(s):  
R Yarchoan ◽  
G Tosato ◽  
R M Blaese ◽  
R M Simon ◽  
D L Nelson

The Epstein-Barr virus (EBV) is a herpes virus that has the capacity to infect human B cells and to induce them to secrete immunoglobulin (Ig). In the current experiments, Poisson analysis of limiting dilution cultures has been used to study the activation of human peripheral B cells by the B95-8 strain of EBV. Under the culture conditions used, 0.2-1% of peripheral blood B cells were activated by EBV to secrete IgM or IgG. In addition, when multiple replicate cultures containing limited numbers of B cells were tested for IgM and for IgG production, the precursors for IgM and IgG segregated independently; thus, individual B cell precursors matured into cells secreting IgM or IgG but not both classes of Ig. Additional experiments using limiting dilutions of EBV were undertaken to study the viral requirements for B cell activation. These studies indicated that B cell activation by EBV to produce Ig was consistent with a "one-hit" model and inconsistent with a "two-hit" model. Taken together, these results indicate that infection by one EBV virion is sufficient to induce a precursor peripheral blood B cell to secrete Ig and that only one isotype of Ig is then secreted.


2016 ◽  
Vol 22 (5) ◽  
pp. 307-315 ◽  
Author(s):  
Mingfang Lu ◽  
Robert Munford

Gram-negative bacterial LPS induce murine B-cell activation and innate (polyclonal) Ab production. Mouse B cells express the LPS signaling receptor (TLR4), yet how LPS activates B-cell responses in vivo is not known. Can LPS directly stimulate B cells to induce innate Ab production? Is activation of non-B cells also required? To address these questions, we transfused LPS-responsive ( Tlr4+/+) or non-responsive ( Tlr4−/−) B cells into LPS-responsive or non-responsive mice. Increased expression of the early activation markers CD69 and CD86 could be induced on transfused Tlr4−/− B cells by injecting LPS subcutaneously into Tlr4+/+ mice, demonstrating indirect activation of B cells by TLR4-responsive non-B cells in vivo, but the Tlr4−/− B cells did not increase serum IgM levels. In contrast, when Tlr4−/− recipients were transfused with Tlr4+/+ B cells, LPS induced large amounts of serum IgM and LPS could also enhance specific Ab production to a protein that was co-injected with it (adjuvant response). Thus, LPS-exposed non-B cells mediated increased surface expression of early B-cell activation markers, but this response did not predict innate Ab responses or LPS adjuvanticity in vivo. Direct stimulation of B cells by LPS via TLR4 was necessary and sufficient to induce B cells to produce Ab in vivo.


Lupus ◽  
2021 ◽  
pp. 096120332110182
Author(s):  
JY Ju ◽  
ZW Xu

Background Lupus B cells not only produce autoantibodies against nuclear antigens but also provide co-stimulation to T cells. However, there is still a lack of comprehensive understanding of the mechanism underlying lupus B cell hyperactivation. Methods This study focuses on the detection of B cell activation status, analysis of early BCR signaling response, DNA sequencing, and quantity determination of BCR signaling regulators in murine lupus models. Results Our result showed that there is a B cell hyperactivation with a significant elevation of B cell activation markers, and a BCR signaling hyperactivity with an abnormal increase of phosphorylated BCR signaling molecules and cytoplasmic calcium in the early response to BCR crosslinking in B6.Sle1/2/3 lupus mouse. Whole exome sequencing identified a multiple point mutation in the exon of many BCR signaling regulators in common murine lupus models, MRL/lpr, NZM2410, BXSB, NZB, and NZW strains. cNDA sequencing confirmed FcγR2b, Ly9, Pirb, Siglecg, and CD22 BCR signaling regulator variants in B6.Sle1/2/3 lupus mouse, but surface protein expression of these regulators on B cells showed an abnormal increase. Conclusion Our findings support that these BCR signaling regulator variants are potential causative genes of B cell hyperactivation in murine lupus models through their possible functional reduction.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S166-S166
Author(s):  
T Nagaishi ◽  
N Tsugawa ◽  
D Yamada ◽  
T Watabe ◽  
M Onizawa ◽  
...  

Abstract Background It has been recently shown that the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) expressed in T cells may regulate immune responses in the gut. Moreover, it has also been reported that the treatments with either an agonistic monoclonal antibody (mAb) or natural ligands for this molecule can suppress colitis severity in murine models of inflammatory bowel diseases (IBD). On the other hand, in addition to T cells, B cells are also an important population in the gut-associated lymphoid tissues (GALT) that orchestrate mucosal homeostasis. However, the role of CEACAM1 in B cells has not been elucidated. Methods We analysed primary B-cell subsets in the lymphoid tissues of wild-type C57BL6 mice as well as a murine B-cell line, A20, to determine the expressions and functions of CEACAM1. Results FACS analysis of the lymphocyte subsets isolated from secondary lymphoid tissues such as spleen, mesenteric lymph nodes and Peyer’s patches of C57BL6 revealed higher expression level of CEACAM1 on B-cell surface than that of T cells. Bone marrow analysis showed that such CEACAM1 expression was increased during maturation and differentiation process of B cells. When isolated splenic B cells were stimulated with LPS, anti-CD40 or anti-μ chain Abs in the presence of agonistic anti-CEACAM1 mAb, the usual increased cytokine productions (such as IL-4 and IL-5 by activation via B cell receptor (BCR) signalling) were specifically suppressed by CEACAM1 signalling rather than B-cell activations via either TLR4 or CD40 signalling. Immunofluorescent studies using confocal microscopy revealed co-localisation of CEACAM1 and BCR when B cells were activated with anti-μ chain Ab. Given these results, A20 cells were transfected with CEACAM1 cDNA. Biochemical analysis showed that an inducible overexpression of CEACAM1 suppressed the BCR signalling in these cells when compared with that of vector alone-transfected control. Moreover, the overexpression of CEACAM1 in these cells resulted in reduced expressions of activation markers such as CD69, CD80, CD86, MHC-I and -II on the cell surface. These observations were associated with decreased Ca2+ influx and suppressed cytokine production by the overexpression of CEACAM1 after BCR signal activation. Conclusion These results suggest that CEACAM1 can regulate B-cell activation and differentiation specifically via BCR signalling in the lymphoid tissues. Therefore, this molecule can be a therapeutic target in IBD by regulating of both T-cell and B-cell activation in GALT.


2000 ◽  
Vol 7 (4) ◽  
pp. 693-697 ◽  
Author(s):  
Maurice R. G. O'Gorman ◽  
Laura Bianchi ◽  
David Zaas ◽  
Virginia Corrochano ◽  
Lauren M. Pachman

ABSTRACT Significant abnormalities are observed in the peripheral blood of juvenile dermatomyositis (JDM) patients with active disease. In this study, we confirm that there is a significant increase in the relative percentage of B lymphocytes in the peripheral blood of a group of untreated children with newly diagnosed active JDM compared to healthy children (P < 0.0001). In order to investigate if properties intrinsic to B cells contributed to their relative increase in JDM, the percentage of B cells expressing activation markers (CD23, CD25, CD54, and CD69) was measured and compared to pediatric controls. Compared to healthy children less than 10 years of age (not significantly different from the JDM group), the JDM patients had an increase in the proportion of lymphocytes expressing CD19 (B cells;P = 0.0017) and decreases in the percentage of lymphocytes that were CD3− CD16+ and/or CD56+ (NK cells; P = 0.01) and CD3+ CD8+ (T suppressor/cytotoxic cells;P = 0.02). There were no significant differences in any of the B-cell activation markers assessed. Of note, the percentage of CD54+ non-B lymphocytes (i.e., T cells and NK cells expressing CD54) was significantly lower in the JDM patients (25% ± 5%) than in the “age-related” healthy control group (43% ± 4%;P = 0.013). These results suggest the following for untreated children with active JDM: (i) the increase in the percentage of peripheral blood B cells is not due to intrinsic B-cell activation, and (ii) CD54/ICAM-1+ non-B cells, CD8+ T cells, and NK cells are being removed from circulation and may be participating in the pathophysiology of the disease.


Author(s):  
Toshiyuki OKADA ◽  
Yasushi HARADA ◽  
Hiroo ITO ◽  
Takenori NOZAKI ◽  
Shigeyuki EBISU ◽  
...  

Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2901-2908 ◽  
Author(s):  
Asimah Rafi ◽  
Mitzi Nagarkatti ◽  
Prakash S. Nagarkatti

Abstract CD44 is a widely distributed cell surface glycoprotein whose principal ligand has been identified as hyaluronic acid (HA), a major component of the extracellular matrix (ECM). Recent studies have demonstrated that activation through CD44 leads to induction of effector function in T cells and macrophages. In the current study, we investigated whether HA or monoclonal antibodies (MoAbs) against CD44 would induce a proliferative response in mouse lymphocytes. Spleen cells from normal and nude, but not severe combined immunodeficient mice, exhibited strong proliferative responsiveness to stimulation with soluble HA or anti-CD44 MoAbs. Furthermore, purified B cells, but not T cells, were found to respond to HA. HA was unable to stimulate T cells even in the presence of antigen presenting cells (APC) and was unable to act as a costimulus in the presence of mitogenic or submitogenic concentrations of anti-CD3 MoAbs. In contrast, stimulation of B cells with HA in vitro, led to B-cell differentiation as measured by production of IgM antibodies in addition to increased expression of CD44 and decreased levels of CD45R. The fact that the B cells were responding directly to HA through its binding to CD44 and not to any contaminants or endotoxins was demonstrated by the fact that F(ab)2 fragments of anti-CD44 MoAbs or soluble CD44 fusion proteins could significantly inhibit the HA-induced proliferation of B cells. Also, HA-induced proliferation of B cells was not affected by the addition of polymixin B, and B cells from lipopolysaccharide (LPS)-unresponsive C3H/HeJ strain responded strongly to stimulation with HA. Furthermore, HA, but not chondroitin-sulfate, another major component of the ECM, induced B-cell activation. It was also noted that injection of HA intraperitoneally, triggered splenic B cell proliferation in vivo. Together, the current study demonstrates that interaction between HA and CD44 can regulate murine B-cell effector functions and that such interactions may play a critical role during normal or autoimmune responsiveness of B cells.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1046.1-1046
Author(s):  
L. Schlicher ◽  
P. Kulig ◽  
M. Murphy ◽  
M. Keller

Background:Cenerimod is a potent, selective, and orally active sphingosine 1-phosphate receptor 1 (S1P1) modulator that is currently being evaluated in a Phase 2b study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including B lymphocytes) in the blood stream and in inflamed tissues. Extensive clinical experience has become available for the nonselective S1P receptor modulator fingolimod in relapsing forms of multiple sclerosis, supporting this therapeutic concept for the treatment of autoimmune disorders.Objectives:Although the effect of S1P-receptor modulators in reducing peripheral B cells is well documented1,2, the role of the S1P1 receptor on this cell type is only incompletely understood. In this study, the mode of action of cenerimod on primary human B cells was investigated in a series of in vitro experiments, including S1P1 receptor cell surface expression and chemotaxis towards S1P. Moreover, S1P1 expression following B cell activation in vitro was studied. As glucocorticoids (GC) are frequently used in the treatment of patients with autoimmune disorders including SLE, the potential influence of GC on the mode of action of cenerimod was evaluated.Methods:Primary human B lymphocytes from healthy donors were isolated from whole blood. In one set of experiments, cells were treated with different concentrations of cenerimod to measure S1P1 receptor internalization by flow cytometry. In a second set of experiments, isolated B cells were activated using different stimuli or left untreated. Cells were then analysed for S1P1 and CD69 cell surface expression and tested in a novel real-time S1P-mediated migration assay. In addition, the effect of physiological concentrations of GCs (prednisolone and prednisone) on cenerimod activity in preventing S1P mediated migration was tested.Results:In vitro, cenerimod led to a dose-dependent internalization of the S1P1 receptor on primary human B lymphocytes. Cenerimod also blocked migration of nonactivated and activated B lymphocytes towards S1P in a concentration-dependent manner, which is in line with the retention of lymphocytes in the lymph node and the reduction of circulating lymphocytes observed in the clinical setting. Upon B cell activation, which was monitored by CD69 upregulation, a simultaneous downregulation of S1P1 expression was detected, leading to less efficient S1P-directed cell migration. Importantly, physiological concentrations of GC did not affect the inhibitory activity of cenerimod on B cell migration.Conclusion:These results show that cenerimod, by modulating S1P1, blocks B lymphocyte migration towards its natural chemoattractant S1P and demonstrate compatibility of cenerimod with GC. These results are consistent with results of comparable experiments done previously using primary human T lymphocytes.References:[1]Nakamura M et al., Mult Scler. 2014 Sep; 20(10):1371-80.[2]Strasser DS et al., RMD Open 2020;6:e001261.Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document