Energy Storage Characteristics of Electrochemically Deposited Graphene Oxide on ITO and Cu Substrates

2019 ◽  
Vol 966 ◽  
pp. 428-432
Author(s):  
Fitrilawati ◽  
Vika Marcelina ◽  
Diyan Unmu Dzujah ◽  
Ayi Bahtiar ◽  
Yeni Wahyuni Hartati ◽  
...  

Graphene Oxide (GO) is two dimensional material that has been widely studied as an electrode material for supercapasitor. We prepared thin films of GO on metal oxide substrate of indium tin oxide (ITO) and metal substrate of Copper (Cu) using electrochemical deposition technique from 0.5 mg/ml GO dispersed in water. ITO-GO film was prepared using voltage range of -1.6 V to 0 V (ITO) and Cu-GO film was prepared using voltage range of 0 V to 1 V at scan rate of 50 mV/s. Both samples were characterized using Cyclic Voltammetry (CV) measurements in 1 M KCl electrolyte at varied scan speed with platinum (Pt) as counter electrode and Ag/AgCl as reference electrode. We compare energy storage characteristics of ITO-GO and Cu-GO using cyclic voltammogram data. It is found that GO deposited in metal substrate of Cu has higer energy density compare to that deposited in metal oxide substrate of ITO.

2007 ◽  
Vol 1044 ◽  
Author(s):  
Otto J. Gregory ◽  
Ximing Chen ◽  
Gustave C. Fralick ◽  
John Wrbanek

AbstractThermoelectric devices based on “n-type” oxide semiconductors and metal/oxide nanocomposites are being considered for high temperature thermocouples, heat flux sensors and energy harvesting devices. In terms of energy harvesting, preliminary 2D thermoelectric calculations indicated that enough electrical energy can be generated from the large thermal gradients that exist within a gas turbine engine to power active wireless devices. Several promising bi-ceramic junctions based on this concept were investigated in terms of their high temperature thermoelectric properties. The most promising bi-ceramic junction was based on indium tin oxide (ITO) and a NiCrCoAlY/alumina nanocomposite. The thermoelectric responses of these individual elements were evaluated relative to a platinum reference electrode. A maximum emf of 77 mV was achieved for a NiCrCoAlY/alumina nanocomposite/platinum thermocouple for an imposed temperature gradient of 1111 °C. The thermoelectric power for this couple was 78 μV/°C. When this NiCrCoAlY/alumina nanocomposite was combined with ITO to form a bi-ceramic junction, thermoelectric powers on the order of 700 μV/°C were obtained. A maximum electromotive force of 291mV was achieved for a hot junction temperature of 1100 °C. The thermoelectric response after repeated thermal cycling to 1200 °C was both repeatable and reproducible. The ITO was prepared in varying nitrogen, oxygen and argon partial pressures, which was used to control the charge carrier concentration, stability and thermoelectric response of the bi-ceramic junctions. The thermoelectric response decreased with increasing nitrogen partial pressure and increased with oxygen partial pressure in the plasma with the argon partial pressure constant. The relationship between the sputtering parameters and thermoelectric properties was investigated and the application of these bi-ceramic junctions as thermocouples and energy harvesting devices is discussed.


2012 ◽  
Vol 5 (1) ◽  
pp. 5236-5240 ◽  
Author(s):  
Alfred Chidembo ◽  
Seyed Hamed Aboutalebi ◽  
Konstantin Konstantinov ◽  
Maryam Salari ◽  
Brad Winton ◽  
...  

Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 49 ◽  
Author(s):  
Hailong Lyu

Different polyaniline (PANI)-based hybrid films were successfully prepared by electro-polymerizing aniline monomers onto pre-spin-coated indium tin oxide (ITO) glass slides with WO3, graphene, or WO3/graphene films. Comparing with pristine PANI, the shifts of the characteristic peaks of PANI-based nanocomposites in UV-visible absorption spectra (UV-vis) and Fourier transform infrared spectroscopy (FT-IR) indicate the chemical interaction between the PANI matrix and the nanofillers, which is also confirmed by the scanning electron microscope (SEM) images. Corresponding coloration efficiencies were obtained for the WO3/PANI (40.42 cm2 C−1), graphene/PANI (78.64 cm2 C−1), and WO3/graphene/PANI (67.47 cm2 C−1) films, higher than that of the pristine PANI film (29.4 cm2 C−1), suggesting positive effects of the introduced nanofillers on the electrochromic performance. The areal capacitances of the films were observed to increase following the order as bare WO3 < WO3/graphene < pristine PANI < WO3/PANI < graphene/PANI < WO3/graphene/PANI films from both the cyclic voltammogram (CV) and galvanostatic charge-discharge (GCD) results. The enhanced energy storage and electrochromic performances of the PANI-based nanocomposite films can be attributed to the capacitance contributions of the introduced nanofillers, increased PANI amount, and the rougher morphology due to the embedment of the nanofillers into the PANI matrix. This extraordinary energy storage and electrochromic performances of the WO3/graphene/PANI film make it a promising candidate for combined electrochromic and energy storage applications.


NANO ◽  
2018 ◽  
Vol 13 (07) ◽  
pp. 1850072 ◽  
Author(s):  
Junguo Lu ◽  
Yanmei Sun ◽  
Dianzhong Wen

We report the application of graphene oxide (GO) as the active layer of memory devices. The indium-tin-oxide/GO/Al devices present the ternary write-once-read-many times resistive switching memory, and retain the data information for [Formula: see text][Formula: see text]s. In the OFF states, the [Formula: see text]–[Formula: see text] characteristics in the applied voltage dominantly followed the space-charge-limited-current behaviors. The intermediate resistance state was attributed to the thermionic emission mechanism. In the ON state, the curve in the applied voltage range was related to an Ohmic mechanism.


Nanoscale ◽  
2021 ◽  
Author(s):  
Qingjie Lu ◽  
Shiqiang Zhou ◽  
Mingpeng Chen ◽  
Bo Li ◽  
Haitang Wei ◽  
...  

Owing to without any additive in the preparation processes, binder-free electrodes for supercapacitors have attracted much attentions. Herein, a hybrid metal oxide which composed with graphene oxide (Co3O4/MnO2/GO) is prepared...


Author(s):  
R.A. Ploc

The manner in which ZrO2 forms on zirconium at 300°C in air has been discussed in the first reference. In short, monoclinic zirconia nucleates and grows with a preferred orientation relative to the metal substrate. The mode of growth is not well understood since an epitaxial relationship which gives minimum misfit between the zirconium ions in the metal/oxide combination is not realized. The reason may be associated with a thin cubic or tetragonal layer of ZrO2 between the inner oxygen saturated metal and the outer monoclinic zirconia.


Author(s):  
Rouwei Yan ◽  
Biao Xu ◽  
K. P. Annamalai ◽  
Tianlu Chen ◽  
Zhiming Nie ◽  
...  

Background : Renewable energies are in great demand because of the shortage of traditional fossil energy and the associated environmental problems. Ni and Se-based materials are recently studied for energy storage and conversion owing to their reasonable conductivities and enriched redox activities as well as abundance. However, their electrochemical performance is still unsatisfactory for practical applications. Objective: To enhance the capacitance storage of Ni-Se materials via modification of their physiochemical properties with Fe. Methods: A two-step method was carried out to prepare FeNi-Se loaded reduced graphene oxide (FeNi-Se/rGO). In the first step, metal salts and graphene oxide (GO) were mixed under basic condition and autoclaved to obtain hydroxide intermediates. As a second step, selenization process was carried out to acquire FeNi-Se/rGO composites. Results: X-ray diffraction measurements (XRD), nitrogen adsorption at 77K, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out to study the structures, porosities and the morphologies of the composites. Electrochemical measurements revealed that FeNi-Se/rGO notably enhanced capacitance than the NiSe/G composite. This enhanced performance was mainly attributed to the positive synergistic effects of Fe and Ni in the composites, which not only had influence on the conductivity of the composite but also enhanced redox reactions at different current densities. Conclusion: NiFe-Se/rGO nanocomposites were synthesized in a facile way. The samples were characterized physicochemically and electrochemically. NiFeSe/rGO giving much higher capacitance storage than the NiSe/rGO explained that the nanocomposites could be an electrode material for energy storage device applications.


Sign in / Sign up

Export Citation Format

Share Document