Forced degradation study to develop and validate stability-indicating RP-LC method for the determination of ciclesonide in bulk drug and metered dose inhalers

Talanta ◽  
2011 ◽  
Vol 87 ◽  
pp. 222-229 ◽  
Author(s):  
Ehab F. Elkady ◽  
Marwa A. Fouad
2005 ◽  
Vol 88 (4) ◽  
pp. 1142-1147 ◽  
Author(s):  
Tushar N Mehta ◽  
Atul K Patel ◽  
Gopal M Kulkarni ◽  
Gunta Suubbaiah

Abstract A forced degradation study was successfully applied for the development of a stability-indicating assay method for determination of rosuvastatin Ca in the presence of its degradation products. The method was developed and optimized by analyzing the forcefully degraded samples. Degradation of the drug was done at various pH values. Moreover, the drug was degraded under oxidative, photolytic, and thermal stress conditions. Mass balance between assay values of degraded samples and generated impurities was found to be satisfactory. The proposed method was able to resolve all of the possible degradation products formed during the stress study. The developed method was successfully applied for an accelerated stability study of the tablet formulation. The major impurities generated during the accelerated stability study of the tablet formulation were matches with those of the forced degradation study. The developed method was validated for determination of rosuvastatin Ca, and the method was found to be equally applicable to study the impurities formed during routine and forced degradation of rosuvastatin Ca.


2017 ◽  
Vol 9 (6) ◽  
pp. 80
Author(s):  
H. Padh ◽  
S. Parmar ◽  
B. Patel

Objective: In the present study a novel stability-indicating high-performance thin-layer chromatography (HPTLC) method for quantitative determination of Swertiamarin (SW) in bulk drug and formulation has been developed and validated as per ICH guideline Q2 (R1) for global acceptance of standardized herbal formulations.Methods: HPTLC method is developed and validated using solvent ethyl acetate: ethanol: chloroform (3:2.5:4.5 v/v/v) (Rf of SW 0.65±0.04) in the absorbance mode at 243 nm. Various forced degradation conditions were used to check degradation of drug.Results: The method showed a good linear relationship (r2 = 0.9990) in the concentration range 200-700 ng per spot. It was found to be linear, accurate, precise and specific.Conclusion: It can be applied for quality control as well as for stability testing of different dosage forms containing swertiamarin. The developed method is validated as per ICH guideline Q2(R1) for global acceptance of standardized herbal formulations.


2021 ◽  
Vol 104 (4) ◽  
pp. 57-68
Author(s):  
V.G. Kamani ◽  
◽  
M. Sujatha ◽  
G.B. Daddala ◽  
◽  
...  

This study reports for the first time about a stability indicating RP-HPLC method for analysis of darolutamide and its impurities 1, 2, and 3 in bulk and formulations. The separation was achieved on Phenomenex column with Luna C18 (250 mm × 4.6 mm, 5 μm) as stationary phase, and 50 mM ammonium acetate: methanol solution 15:80 (v/v) at pH 5.2 as mobile phase at 1.0 mL/min flow rate. UV detection was carried at wavelength of 239 nm. In these conditions the retention time of darolutamide and its impurities 1, 2, and 3 was 7.05, 8.90, 4.63 and 5.95 min, respectively. The method was validated for system suitability, range of analysis, precision, specificity, stability, and robustness. Forced degradation study was done through exposure of the analyte to five different stress conditions and the % degradation was small in all degradation condition. The proposed method can separate and estimate the drug and its impurities in pharmaceutical formulations. Hence, the developed method was suitable for the quantification of darolutamide and can separate and analyse impurities 1, 2, and 3


2020 ◽  
Vol 5 (1) ◽  
pp. 51-55
Author(s):  
K.V. Ramanjaneyulu ◽  
K. Venkata Ramana ◽  
M. Prasada Rao

The objective of this study was to develop and validate a method for simultaneous quantitative analysis of allopurinol and lesinurad in bulk drug and pharmaceutical formulations. An isocratic HPLC analysis method using a reverse phase Waters spherisorb ODS1 C18 column (250 mm × 4.6 mm, 5 μ) and a simple mobile phase without buffer was developed, optimized and fully validated. Analyses were carried out at a flow rate of 0.9 mL/min at 50 °C and monitored at 246 nm. This HPLC method exhibited good linearity, accuracy and selectivity. The recovery (accuracy) of both allopurinol and lesinurad from all matrices was greater than 98 %. The allopurinol and lesinurad peak detected in the samples of a forced degradation study and no interference of excepients or the degradation products formed during stress study. The method was rugged with good intra- and inter-day precision and sensitive. This stability indicating HPLC method was selective, accurate and precise for the simultaneous analysis of allopurinol and lesinurad in pharmaceutical formulations.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Madihalli S. Raghu ◽  
Kanakapura Basavaiah ◽  
Cijo M. Xavier ◽  
Kudige N. Prashanth

A simple, precise, and accurate, and stability-indicating isocratic Ultraperformance Liquid Chromatography (UPLC) method was developed for the determination of methdilazine hydrochloride (MDH) in bulk drug and in its tablets. The use of UPLC, with a rapid 5-minute-reversed-phase isocratic separation on a 1.7 μm reversed-phase packing material to provide rapid ‘‘high throughput’’ support for MDH, is demonstrated. The method was developed using Waters Acquity BEH C18 column (100 mm × 2.1 mm, 1.7 μm) with mobile phase consisting of a mixture of potassium dihydrogenorthophosphate and 1-pentane sulphonic acid buffer of pH 4.0 and acetonitrile (60 : 40 v/v). The eluted compound was detected at 254 nm with a UV detector. The standard curve of mean peak area versus concentration showed an excellent linearity over a concentration range 0.5–80 μg mL−1 MDH with regression coefficient () value of 0.9999. The limit of detection () was 0.2 μg mL−1 and the limit of quantification () was 0.5 μg mL−1. Forced degradation of the bulk sample was conducted in accordance with the ICH guidelines. Acidic, basic, hydrolytic, oxidative, thermal, and photolytic degradations were used to assess the stability indicating power of the method. The drug was found to be stable in acidic, basic, thermal, hydrolytic, and photolytic stress conditions and showed slight degradation in oxidative stress condition.


Author(s):  
Birva A. Athavia ◽  
Zarna R. Dedania ◽  
Ronak R. Dedania ◽  
S. M. Vijayendra Swamy ◽  
Chetana B. Prajapati

Objective: The aim and objective of this study was to develop and validate Stability Indicating HPLC method for determination of Vilazodone Hydrochloride.Methods: The method was carried out on a Phenomenex, C18 (250x4.6 mm, 5 µm) Column using a mixture of Acetonitrile: Water (50:50v/v), pH adjusted to 3.3 with Glacial Acetic Acid for separation. The flow rate was adjusted at 1 ml/min and Detection was carried out at 240 nm.Results: The retention time of vilazodone hydrochloride was found to be 2.3 min. The calibration curve was found to be linear in the range 25-75µg/ml with a correlation coefficient (R2=0.996). The limit of detection and limit of quantitation were found to be 4.78µg/ml and 14.48µg/ml respectively. The % recovery of vilazodone hydrochloride was found to be in the range of 98.21±0.08 % to 99.07±0.64%. The proposed method was successfully applied for the estimation of vilazodone hydrochloride in marketed tablet formulation.Vilazodone Hydrochloride was subjected to forced degradation under Acidic, Alkaline, Oxidation, Dry Heat and Photolytic degradation conditions. Vilazodone hydrochloride showed 3.12% degradation under acidic condition, 4.78% under alkaline condition, 7.8% under oxidation condition, 3.53% under dry heat condition and 4.9% under photolytic condition.Acid degradation impurity was identified and characterised by LC-MS/MS was found to be 1-(4-Penten-1-yl) piperazine having molecular weight 154.253 (m/z 155.08) and Molecular Formula C9H18N2.Conclusion: A simple, precise, rapid and accurate Stability Indicating HPLC method has been developed and validated for the determination of Vilazodone Hydrochloride in presence of its degradation products as per the ICH Guidelines. 


Sign in / Sign up

Export Citation Format

Share Document