Development and validation of a stability-indicating LC–UV method for the determination of pantethine and its degradation product based on a forced degradation study

2014 ◽  
Vol 97 ◽  
pp. 141-150 ◽  
Author(s):  
Rossana Canavesi ◽  
Silvio Aprile ◽  
Elena Varese ◽  
Giorgio Grosa
2021 ◽  
Vol 104 (4) ◽  
pp. 57-68
Author(s):  
V.G. Kamani ◽  
◽  
M. Sujatha ◽  
G.B. Daddala ◽  
◽  
...  

This study reports for the first time about a stability indicating RP-HPLC method for analysis of darolutamide and its impurities 1, 2, and 3 in bulk and formulations. The separation was achieved on Phenomenex column with Luna C18 (250 mm × 4.6 mm, 5 μm) as stationary phase, and 50 mM ammonium acetate: methanol solution 15:80 (v/v) at pH 5.2 as mobile phase at 1.0 mL/min flow rate. UV detection was carried at wavelength of 239 nm. In these conditions the retention time of darolutamide and its impurities 1, 2, and 3 was 7.05, 8.90, 4.63 and 5.95 min, respectively. The method was validated for system suitability, range of analysis, precision, specificity, stability, and robustness. Forced degradation study was done through exposure of the analyte to five different stress conditions and the % degradation was small in all degradation condition. The proposed method can separate and estimate the drug and its impurities in pharmaceutical formulations. Hence, the developed method was suitable for the quantification of darolutamide and can separate and analyse impurities 1, 2, and 3


2005 ◽  
Vol 88 (4) ◽  
pp. 1142-1147 ◽  
Author(s):  
Tushar N Mehta ◽  
Atul K Patel ◽  
Gopal M Kulkarni ◽  
Gunta Suubbaiah

Abstract A forced degradation study was successfully applied for the development of a stability-indicating assay method for determination of rosuvastatin Ca in the presence of its degradation products. The method was developed and optimized by analyzing the forcefully degraded samples. Degradation of the drug was done at various pH values. Moreover, the drug was degraded under oxidative, photolytic, and thermal stress conditions. Mass balance between assay values of degraded samples and generated impurities was found to be satisfactory. The proposed method was able to resolve all of the possible degradation products formed during the stress study. The developed method was successfully applied for an accelerated stability study of the tablet formulation. The major impurities generated during the accelerated stability study of the tablet formulation were matches with those of the forced degradation study. The developed method was validated for determination of rosuvastatin Ca, and the method was found to be equally applicable to study the impurities formed during routine and forced degradation of rosuvastatin Ca.


2017 ◽  
Vol 9 (6) ◽  
pp. 80
Author(s):  
H. Padh ◽  
S. Parmar ◽  
B. Patel

Objective: In the present study a novel stability-indicating high-performance thin-layer chromatography (HPTLC) method for quantitative determination of Swertiamarin (SW) in bulk drug and formulation has been developed and validated as per ICH guideline Q2 (R1) for global acceptance of standardized herbal formulations.Methods: HPTLC method is developed and validated using solvent ethyl acetate: ethanol: chloroform (3:2.5:4.5 v/v/v) (Rf of SW 0.65±0.04) in the absorbance mode at 243 nm. Various forced degradation conditions were used to check degradation of drug.Results: The method showed a good linear relationship (r2 = 0.9990) in the concentration range 200-700 ng per spot. It was found to be linear, accurate, precise and specific.Conclusion: It can be applied for quality control as well as for stability testing of different dosage forms containing swertiamarin. The developed method is validated as per ICH guideline Q2(R1) for global acceptance of standardized herbal formulations.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0244951
Author(s):  
Hany W. Darwish ◽  
Nesma A. Ali ◽  
Ibrahim A. Naguib ◽  
Mohamed R. El Ghobashy ◽  
Abdullah M. Al-Hossaini ◽  
...  

A reliable, selective and sensitive stability-indicating RP-HPLC assay was established for the quantitation of bromazepam (BMZ) and one of the degradant and stated potential impurities; 2-(2-amino-5-bromobenzoyl) pyridine (ABP). The assay was accomplished on a C18 column (250 mm × 4.6 mm i.d., 5 μm particle size), and utilizing methanol-water (70: 30, v/v) as the mobile phase, at a flow rate of 1.0 ml min-1. HPLC detection of elute was obtained by a photodiode array detector (DAD) which was set at 230 nm. ICH guidelines were adhered for validation of proposed method regarding specificity, sensitivity, precision, linearity, accuracy, system suitability and robustness. Calibration curves of BMZ and ABP were created in the range of 1–16 μg mL-1 with mean recovery percentage of 100.02 ± 1.245 and 99.74 ± 1.124, and detection limit of 0.20 μg mL-1 and 0.24 μg mL-1 respectively. BMZ stability was inspected under various ICH forced degradation conditions and it was found to be easily degraded in acidic and alkaline conditions. The results revealed the suitability of the described methodology for the quantitation of the impurity (ABP) in a BMZ pure sample. The determination of BMZ in pharmaceutical dosage forms was conducted with the described method and showed mean percentage recovery of 99.39 ± 1.401 and 98.72 ± 1.795 (n = 6), respectively. When comparing the described procedure to a reference HPLC method statistically, no significant differences between the two methods in regard to both accuracy and precision were found.


2014 ◽  
Vol 3 (7) ◽  
pp. 296-300 ◽  
Author(s):  
Paramasivam Balan ◽  
Nagappan Kannappan

A stability indicating RP-UPLC method was developed and validated for the simultaneous determination of Thiocolchicoside (TCC) and Aceclofenac (ACF) in tablet dosage form. The chromatographic separation was carried out by Thermo Scientific UPLC Instrument, Accela 1250 Pump, auto sampler with PDA detector, using column Thermo Scientific hypersil gold C18, (50 x 2.1mm) particle size 1.9µm using 5% ammonium acetate buffer and methanol in the ratio of 40:60, pH was adjusted to 5 with ortho phosphoric acid as mobile phase at a flow rate of 250 µl/min with the detection at 276nm. The run times of the TCC and ACF were about 0.697 and 1.125 minutes, respectively. The detector response is linear from 4.8 µg/ml to 7.2 µg/ml and 63.8 µg/ml to 96 µg/ml concentrations for TCC and ACF respectively. The linear regression equation was found to be y = 20620x-677.68 (r2 = 0.9996) for TCC and y= 50931x-319.3 (r2 = 0.9997) for ACF. The detection limit and quantification limit was 0.076µg and 0.23µg for TCC and 0.27µg and 0.71µg for ACF. The percentage of assay of TCC and ACF were about 99.50% and 99.96% respectively. The stability indicating capability was established by forced degradation experiments. The method was satisfactorily validated as per the ICH guidelines.DOI: http://dx.doi.org/10.3329/icpj.v3i7.19078 International Current Pharmaceutical Journal, June 2014, 3(7): 296-300


2013 ◽  
Vol 96 (3) ◽  
pp. 593-598
Author(s):  
Anna Pratima G Nikalje ◽  
Vishnu P Choudhari

Abstract A simple stability-indicating isocratic RP-HPLC method was developed and validated for the determination of mycophenolate sodium and its alkali degradation product. Forced degradation of the drug was carried out under thermolytic, photolytic, acid/base hydrolytic, and oxidative stress conditions. Alkali degradation product DP1 was isolated, and separation of stress degradation products was achieved on a Symmetry C18 (250 × 4.6 mm × 5.0 μm) column using the mobile phase methanol–acetate buffer adjusted with acetic acid to pH 6.0 (76 + 24, v/v) at a 0.55 mL/min flow rate and 50°C. Data were integrated at the detection wavelength of 251 nm. The method validation characteristics included accuracy, precision, linearity, range, specificity, and sensitivity per International Conference on Harmonization guidelines. Robustness testing was conducted to evaluate the effect of minor changes in the chromatographic conditions and to establish appropriate system suitability parameters. Structural elucidation of degraded products was performed by HPLC/MS/MS. The method was used successfully for drug product analysis, dissolution study, and determination of the drug's acid, alkali, and oxidative degradation kinetics.


Sign in / Sign up

Export Citation Format

Share Document