Electrochemical preconcentration coupled with spectroscopic techniques for trace lead analysis in olive oils

Talanta ◽  
2020 ◽  
Vol 210 ◽  
pp. 120667
Author(s):  
M. Antonietta Baldo ◽  
Angela M. Stortini ◽  
Paolo Oliveri ◽  
Riccardo Leardi ◽  
Ligia M. Moretto ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1241
Author(s):  
Nikolaos Gyftokostas ◽  
Eleni Nanou ◽  
Dimitrios Stefas ◽  
Vasileios Kokkinos ◽  
Christos Bouras ◽  
...  

In the present work, the emission and the absorption spectra of numerous Greek olive oil samples and mixtures of them, obtained by two spectroscopic techniques, namely Laser-Induced Breakdown Spectroscopy (LIBS) and Absorption Spectroscopy, and aided by machine learning algorithms, were employed for the discrimination/classification of olive oils regarding their geographical origin. Both emission and absorption spectra were initially preprocessed by means of Principal Component Analysis (PCA) and were subsequently used for the construction of predictive models, employing Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). All data analysis methodologies were validated by both “k-fold” cross-validation and external validation methods. In all cases, very high classification accuracies were found, up to 100%. The present results demonstrate the advantages of machine learning implementation for improving the capabilities of these spectroscopic techniques as tools for efficient olive oil quality monitoring and control.


Foods ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 18 ◽  
Author(s):  
Eleonora Borello ◽  
Valentina Domenici

The colour of olive oil is due to the presence of natural pigments belonging to the class of carotenoids, chlorophylls, and their derivatives. These substances, other than being responsible for the colour, an important qualitative feature of the oil, have antioxidant and, more generally, nutraceutical properties and their quantification can be related to the product’s quality and authenticity. In this work, we have quantified the total amount of carotenoids and chlorophylls’ derivatives in several virgin and extra-virgin olive oils produced in Italy, by using two different methods that are based on near-ultraviolet-visible absorption spectroscopy. The first method defines two indexes, K670 and K470, related to absorbance values of oil at wavelengths of 670 and 470 nm, respectively. The second method is based on the mathematical deconvolution of the whole absorption spectrum of the oil to obtain the concentrations of four main pigments present in olive oils: β-carotene, lutein, pheophytin A, and pheophytin B. The concentrations of the total carotenoids and total chlorophylls’ derivatives, as obtained by the two spectroscopic methods, are compared and the results are discussed in view of the practical usefulness of spectroscopic techniques for a fast determination of pigments in olive oil.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1245
Author(s):  
Giulia Vicario ◽  
Alessandra Francini ◽  
Mario Cifelli ◽  
Valentina Domenici ◽  
Luca Sebastiani

Several spectroscopic techniques have been optimized to check extra-virgin olive oil quality and authenticity, as well as to detect eventual adulterations. These methods are usually complementary and can give information about different olive oil chemical components with bioactive and antioxidant properties. In the present work, a well-characterized set of extra-virgin olive oil (cultivar Frantoio) samples from a specific area of Tuscany (Italy) were investigated by combining near UV-Vis absorption spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) to identify and quantify different chemical components, such as pigments, secoiridoids and squalene, related to the nutritional and quality properties of olive oils. Moreover, the pigmentation index of olives, organoleptic and sensory properties, total phenolic compound contents and the lipidic fractions of olive oils were investigated. The results obtained are, finally, compared and discussed in order to correlate several properties of both olives and olive oils with specific features of the cultivation area.


2014 ◽  
Vol 117 (1) ◽  
pp. 92-102 ◽  
Author(s):  
Krzysztof Wójcicki ◽  
Igor Khmelinskii ◽  
Marek Sikorski ◽  
Francesco Caponio ◽  
Vito M. Paradiso ◽  
...  

2020 ◽  
Vol 183 ◽  
pp. 04003
Author(s):  
Aimen El Orche ◽  
Mohamed Mbarki ◽  
Amine Cheikh ◽  
Mustapha Bouatia

The development of sustainable and environmentally friendly analytical methods for agri-food products and the modification of reference methods is an essential issue to be treated in green analytical chemistry. The potential application of non-destructive spectroscopic techniques with chemometrics tools to achieve these principles are examined in this work. In this study a new sustainable analytical approach based on the use of fluorescence spectroscopy and multivariate analysis methods of Machine-Learning(Support Vector Machine regression) and chemometrics (Partial Least Square regression) have been developed to control the quality of virgin olive oils in Morocco according to their shelf life. The spectral data of 45 samples were first analyzed by principal component analysis method (PCA), the PCA method shows an important classification of the three groups of olive oil according to their shelf life. The use of the regression methods SVM and PLS shows a high ability to predict the quality of olive oils, this ability is shown by the high value of R-square and the low value of root mean square error of calibration and crossvalidation (RMSEC, RMSECV), the validation of these models by cross-validation shows the potential of this sustainable analytical approach in the determination of the quality of virgin olive oils.


Author(s):  
Marcos F. Maestre

Recently we have developed a form of polarization microscopy that forms images using optical properties that have previously been limited to macroscopic samples. This has given us a new window into the distribution of structure on a microscopic scale. We have coined the name differential polarization microscopy to identify the images obtained that are due to certain polarization dependent effects. Differential polarization microscopy has its origins in various spectroscopic techniques that have been used to study longer range structures in solution as well as solids. The differential scattering of circularly polarized light has been shown to be dependent on the long range chiral order, both theoretically and experimentally. The same theoretical approach was used to show that images due to differential scattering of circularly polarized light will give images dependent on chiral structures. With large helices (greater than the wavelength of light) the pitch and radius of the helix could be measured directly from these images.


Author(s):  
Bradley L. Thiel ◽  
Chan Han R. P. ◽  
Kurosky L. C. Hutter ◽  
I. A. Aksay ◽  
Mehmet Sarikaya

The identification of extraneous phases is important in understanding of high Tc superconducting oxides. The spectroscopic techniques commonly used in determining the origin of superconductivity (such as RAMAN, XPS, AES, and EXAFS) are surface-sensitive. Hence a grain boundary phase several nanometers thick could produce irrelevant spectroscopic results and cause erroneous conclusions. The intergranular phases present a major technological consideration for practical applications. In this communication we report the identification of a Cu2O grain boundary phase which forms during the sintering of YBa2Cu3O7-x (1:2:3 compound).Samples are prepared using a mixture of Y2O3. CuO, and BaO2 powders dispersed in ethanol for complete mixing. The pellets pressed at 20,000 psi are heated to 950°C at a rate of 5°C per min, held for 1 hr, and cooled at 1°C per min to room temperature. The samples show a Tc of 91K with a transition width of 2K. In order to prevent damage, a low temperature stage is used in milling to prepare thin foils which are then observed, using a liquid nitrogen holder, in a Philips 430T at 300 kV.


2021 ◽  
Author(s):  
Hicham Zaroual ◽  
El Mestafa El Hadrami ◽  
Romdhane Karoui

This study examines the feasibility of using front face fluorescence spectroscopy (FFFS) to authenticate 41 virgin olive oil (VOO) samples collected from 5 regions in Morocco during 2 consecutive crop seasons.


Sign in / Sign up

Export Citation Format

Share Document