scholarly journals Latent vehicle type propensity segments: Considering the influence of household vehicle fleet structure

2022 ◽  
Vol 26 ◽  
pp. 41-56
Author(s):  
Xinyi Wang ◽  
F. Atiyya Shaw ◽  
Patricia L. Mokhtarian
Keyword(s):  
2018 ◽  
Vol 882 ◽  
pp. 90-95 ◽  
Author(s):  
Michael Scholz ◽  
Xu Zhang ◽  
Jörg Franke

The paper presents an intralogistics routing-service for autonomous and versatile transport vehicles. An infrastructural sensor digitize the workspace of the vehicle and is the basis for the vehicle-specific routing plan. Nowadays, a central computing unit allocates transportation task to a known number of automated guided vehicles, which are usually of the same type. Furthermore, this device generates a routing appropriate to the dimensions and the kinematic gauge of the vehicle fleet. The pathing for each specific vehicle is calculated and the result is send to the different entities. The approach of this paper bases on the digitization of the workspace with a ceiling camera, which divides the scenery into moving obstacles and an adaptive background picture. A central computing unit receives the background picture of several cameras and stitch them together to an overview of the entire workspace, e.g. a production hall. Furthermore, the approach includes the development of automated guided vehicles to versatile autonomous vehicles, were each entity is able to calculate the pathing on a given routing plan. A fleet of versatile autonomous vehicles consists of vehicles with task-specific dimensions and kinematic gauges. Therefore, each vehicle needs its own routing-plan. The solution is that each vehicles uses a vehicle parameter-server and register itself with these parameters at the routing unit. This unit is calculating a routing-plan for each specific vehicle dimension and gauge and providing it. When getting a new task, the vehicles uses this routing-plan to do the pathing. The routing-algorithm is implemented inside the service-layer of the versatile autonomous vehicle system. This approach lowers the amount of data, which is send between the service layer and the transportation entities by reducing the information of the workspace to the possible routes of each specific vehicle. Furthermore, the calculation time for routing and pathing is lowered, because each vehicle is calculating its task-specific path, but the route-map is calculated once for each vehicle-type by the routing-service.


2013 ◽  
Vol 133 (8) ◽  
pp. 795-803
Author(s):  
Kazuki Nagase ◽  
Shutaro Yorozu ◽  
Takahiro Kosugi ◽  
Yuki Yokokura ◽  
Seiichiro Katsura

1980 ◽  
Author(s):  
ARMY TRANSPORTATION SCHOOL FORT EUSTIS VA

Author(s):  
Hideki OKA ◽  
Makoto CHIKARAISHI ◽  
Jun TANABE ◽  
Daisuke FUKUDA ◽  
Takashi OGUCHI

Robotica ◽  
2020 ◽  
pp. 1-18
Author(s):  
M. Garcia ◽  
P. Castillo ◽  
E. Campos ◽  
R. Lozano

SUMMARY A novel underwater vehicle configuration with an operating principle as the Sepiida animal is presented and developed in this paper. The mathematical equations describing the movements of the vehicle are obtained using the Newton–Euler approach. An analysis of the dynamic model is done for control purposes. A prototype and its embedded system are developed for validating analytically and experimentally the proposed mathematical representation. A real-time characterization of one mass is done to relate the pitch angle with the radio of displacement of the mass. In addition, first validation of the closed-loop system is done using a linear controller.


2020 ◽  
Vol 10 (3) ◽  
pp. 859 ◽  
Author(s):  
Soon Ho Kim ◽  
Jong Won Kim ◽  
Hyun-Chae Chung ◽  
Gyoo-Jae Choi ◽  
MooYoung Choi

This study examines the human behavioral dynamics of pedestrians crossing a street with vehicular traffic. To this end, an experiment was constructed in which human participants cross a road between two moving vehicles in a virtual reality setting. A mathematical model is developed in which the position is given by a simple function. The model is used to extract information on each crossing by performing root-mean-square deviation (RMSD) minimization of the function from the data. By isolating the parameter adjusted to gap features, we find that the subjects primarily changed the timing of the acceleration to adjust to changing gap conditions, rather than walking speed or duration of acceleration. Moreover, this parameter was also adjusted to the vehicle speed and vehicle type, even when the gap size and timing were not changed. The model is found to provide a description of gap affordance via a simple inequality of the fitting parameters. In addition, the model turns out to predict a constant bearing angle with the crossing point, which is also observed in the data. We thus conclude that our model provides a mathematical tool useful for modeling crossing behaviors and probing existing models. It may also provide insight into the source of traffic accidents.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 72528-72537 ◽  
Author(s):  
Hatim Derrouz ◽  
Abderrahim Elbouziady ◽  
Hamd Ait Abdelali ◽  
Rachid Oulad Haj Thami ◽  
Sanaa El Fkihi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document