Effect of C16TMA contents on the thermal stability of organo-bentonites: In situ X-ray diffraction analysis

2013 ◽  
Vol 551 ◽  
pp. 7-13 ◽  
Author(s):  
Fethi Kooli
2005 ◽  
Vol 60 (5) ◽  
pp. 505-510 ◽  
Author(s):  
Tong-Lai Zhang ◽  
Jiang-Chuang Song ◽  
Jian-Guo Zhang ◽  
Gui-Xia Ma ◽  
Kai-Bei Yu

Cobalt(II) and zinc(II) complexes of ethyl carbazate (ECZ), [Co(ECZ)3](NO3)2 and [Zn(ECZ)3] (NO3)2, were synthesized. Single crystals of these two compounds were grown from aqueous solutions using a slow evaporation method. Their structures have been determined by X-ray diffraction analysis. Both of them are monoclinic with space group P21/n. The complexes are further characterized by element analysis and IR measurements. Their thermal stabilities are studied by using TG-DTG, DSC techniques. When heated to 350 °C, only metal oxide was left for both complexes.


2016 ◽  
Vol 72 (a1) ◽  
pp. s418-s418 ◽  
Author(s):  
Claudia Cancellieri ◽  
Frank Moszner ◽  
Mirco Chiodi ◽  
Songhak Yoon ◽  
Daniel Ariosa ◽  
...  

2014 ◽  
Vol 904 ◽  
pp. 7-9
Author(s):  
Xiao Hua Gu ◽  
Xi Wei Zhang ◽  
Bao Yun Xu ◽  
Peng Zeng

In this paper, the diphenyl methane diisocyanate (MDI) was used to modify montmorillonoid (MMT) and got the organic montmorillonite (OMMT), which was used with the monomers of PET by in situ polymerization method to prepare PET/MMT nanocomposition. The OMMT was analyzed by the X ray diffraction (XRD) to test the change of the spacing layer. Dispersion of MMT in the PET/MMT nanocomposites were studied with XRD and SEM and by means of thermogravimetric analyzer (TGA) on the thermal stability of PET/MMT nanocomposites. The results showed that, MDI modified MMT successfully, and the compatibility of MMT and PET was increased .


2014 ◽  
Vol 915-916 ◽  
pp. 780-783
Author(s):  
Hong Wang ◽  
Ming Tian Li ◽  
Yue Lu ◽  
Di Liu

Pyrrole and m-toluidine copolymer (P(PY/MT)) / montmorillonite (MMT) Composites were prepared by in situ chemical polymerization of pyrrole with m-toluidine monomer in the presence of montmorillonite. The structural, morphological and thermal properties of these composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). X-ray diffraction result for P(PY/MT)-MMT illuminated the intercalation of P(PY/MT) copolymer between the clay layers. The FT-IR result showed the successful incorporation of montmorillonite clay in the prepared P(PY/MT)/MMT composite. The higher thermal stability of high MMT content rate might be attributed to its higher chain compactness due to the interfacial interaction between the P(PY/MT) and the clay.


2015 ◽  
Vol 118 (3) ◽  
pp. 035309 ◽  
Author(s):  
L. Rogström ◽  
N. Ghafoor ◽  
J. Schroeder ◽  
N. Schell ◽  
J. Birch ◽  
...  

2010 ◽  
Vol 150-151 ◽  
pp. 386-390
Author(s):  
Yuan Xun Li ◽  
Ying Li Liu ◽  
Huai Wu Zhang ◽  
Wei Wei Ling

The rod-shaped polyaniline (PANI)-barium ferrite nanocomposites were synthesized by in situ polymerization of aniline in the presence of BaFe12O19 nanoparticles with diameters of 60-80 nm. The composites obtained were characterized by infrared spectra (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The thermal stability and the composition of the composites were investigated by TG-DTG analysis. The results indicate that the thermal stability of the composites is higher than that of the pure PANI which can be attributed to the interactions existed between PANI chains and ferrite particles.


Sign in / Sign up

Export Citation Format

Share Document