Modulated receptor interactions in bacterial transmembrane signaling

2004 ◽  
Vol 14 (9) ◽  
pp. 478-482 ◽  
Author(s):  
Daniel J. Webre ◽  
Peter M. Wolanin ◽  
Jeffry B. Stock
2010 ◽  
Vol 192 (5) ◽  
pp. 1193-1200 ◽  
Author(s):  
Divya N. Amin ◽  
Gerald L. Hazelbauer

ABSTRACT Transmembrane chemoreceptors are central components in bacterial chemotaxis. Receptors couple ligand binding and adaptational modification to receptor conformation in processes that create transmembrane signaling. Homodimers, the fundamental receptor structural units, associate in trimers and localize in patches of thousands. To what degree do conformational coupling and transmembrane signaling require higher-order interactions among dimers? To what degree are they altered by such interactions? To what degree are they inherent features of homodimers? We addressed these questions using nanodiscs to create membrane environments in which receptor dimers had few or no potential interaction partners. Receptors with many, few, or no interaction partners were tested for conformational changes and transmembrane signaling in response to ligand occupancy and adaptational modification. Conformation was assayed by measuring initial rates of receptor methylation, a parameter independent of receptor-receptor interactions. Coupling of ligand occupancy and adaptational modification to receptor conformation and thus to transmembrane signaling occurred with essentially the same sensitivity and magnitude in isolated dimers as for dimers with many neighbors. Thus, we conclude that the chemoreceptor dimer is the fundamental unit of conformational coupling and transmembrane signaling. This implies that in signaling complexes, coupling and transmembrane signaling occur through individual dimers and that changes between dimers in a receptor trimer or among trimer-based signaling complexes are subsequent steps in signaling.


2020 ◽  
Vol 20 (10) ◽  
pp. 908-920 ◽  
Author(s):  
Su-Min Wu ◽  
Xiao-Yang Qiu ◽  
Shu-Juan Liu ◽  
Juan Sun

Inhibitors of monoamine oxidase (MAO) have shown therapeutic values in a variety of neurodegenerative diseases such as depression, Parkinson’s disease and Alzheimer’s disease. Heterocyclic compounds exhibit a broad spectrum of biological activities and vital leading compounds for the development of chemical drugs. Herein, we focus on the synthesis and screening of novel single heterocyclic derivatives with MAO inhibitory activities during the past decade. This review covers recent pharmacological advancements of single heterocyclic moiety along with structure- activity relationship to provide better correlation among different structures and their receptor interactions.


Sign in / Sign up

Export Citation Format

Share Document