Insights into the dynamics of an orogenic wedge from lubrication theory: Implications for the Himalayan tectonics

2020 ◽  
Vol 776 ◽  
pp. 228335 ◽  
Author(s):  
Giridas Maiti ◽  
Nibir Mandal ◽  
Santanu Misra
Friction ◽  
2021 ◽  
Author(s):  
Shaoqing Xue ◽  
Hanglin Li ◽  
Yumei Guo ◽  
Baohua Zhang ◽  
Jiusheng Li ◽  
...  

AbstractWater is as an economic, eco-friendly, and efficient lubricant that has gained widespread attention for manufacturing. Using graphene oxide (GO)-based materials can improve the lubricant efficacy of water lubrication due to their outstanding mechanical properties, water dispersibility, and broad application scenarios. In this review, we offer a brief introduction about the background of water lubrication and GO. Subsequently, the synthesis, structure, and lubrication theory of GO are analyzed. Particular attention is focused on the relationship between pH, concentration, and lubrication efficacy when discussing the tribology behaviors of pristine GO. By compounding or reacting GO with various modifiers, amounts of GO-composites are synthesized and applied as lubricant additives or into frictional pairs for different usage scenarios. These various strategies of GO-composite generate interesting effects on the tribology behaviors. Several application cases of GO-based materials are described in water lubrication, including metal processing and bio-lubrication. The advantages and drawbacks of GO-composites are then discussed. The development of GO-based materials for water lubrication is described including some challenges.


1966 ◽  
Vol 181 (1) ◽  
pp. 185-190 ◽  
Author(s):  
D. J. Lines ◽  
J. M. Lawrie ◽  
J. P. O'Donoghue

Although rotary shaft garter spring seals are widely used throughout industry, very little is known about the sealing mechanism of the lip-shaft interface. It is now generally accepted that some sort of fluid film separates the lip and the shaft. Previous workers have also postulated a relationship between the coefficient of friction and a non-dimensional hydrodynamic parameter, as in standard lubrication theory. This present paper clarifies this relationship, and shows that seals can also operate over the mixed friction, as well as the full film lubrication region. The results were obtained by accurate knowledge of the operating temperature under the sealing lip. Two types of surface thermocouple were developed to do this and these are described in full.


Author(s):  
Behrouz Tavakol ◽  
Guillaume Froehlicher ◽  
Douglas P. Holmes ◽  
Howard A. Stone

Lubrication theory is broadly applicable to the flow characterization of thin fluid films and the motion of particles near surfaces. We offer an extension to lubrication theory by starting with Stokes equations and considering higher-order terms in a systematic perturbation expansion to describe the fluid flow in a channel with features of a modest aspect ratio. Experimental results qualitatively confirm the higher-order analytical solutions, while numerical results are in very good agreement with the higher-order analytical results. We show that the extended lubrication theory is a robust tool for an accurate estimate of pressure drop in channels with shape changes on the order of the channel height, accounting for both smooth and sharp changes in geometry.


2017 ◽  
Vol 68 (5) ◽  
pp. 403-418 ◽  
Author(s):  
Ján Soták ◽  
Zuzana Pulišová ◽  
Dušan Plašienka ◽  
Viera Šimonová

Abstract The Súľov Conglomerates represent mass-transport deposits of the Súľov-Domaniža Basin. Their lithosomes are intercalated by claystones of late Thanetian (Zones P3 - P4), early Ypresian (Zones P5 - E2) and late Ypresian to early Lutetian (Zones E5 - E9) age. Claystone interbeds contain rich planktonic and agglutinated microfauna, implying deep-water environments of gravity-flow deposition. The basin was supplied by continental margin deposystems, and filled with submarine landslides, fault-scarp breccias, base-of-slope aprons, debris-flow lobes and distal fans of debrite and turbidite deposits. Synsedimentary tectonics of the Súľov-Domaniža Basin started in the late Thanetian - early Ypresian by normal faulting and disintegration of the orogenic wedge margin. Fault-related fissures were filled by carbonate bedrock breccias and banded crystalline calcite veins (onyxites). The subsidence accelerated during the Ypresian and early Lutetian by gravitational collapse and subcrustal tectonic erosion of the CWC plate. The basin subsided to lower bathyal up to abyssal depth along with downslope accumulation of mass-flow deposits. Tectonic inversion of the basin resulted from the Oligocene - early Miocene transpression (σ1 rotated from NW-SE to NNW-SSE), which changed to a transpressional regime during the Middle Miocene (σ1 rotated from NNE-SSW to NE-SW). Late Miocene tectonics were dominated by an extensional regime with σ3 axis in NNW-SSE orientation.


2015 ◽  
Vol 663 ◽  
pp. 150-176 ◽  
Author(s):  
Antonio Jabaloy-Sánchez ◽  
Ali Azdimousa ◽  
Guillermo Booth-Rea ◽  
Lahcen Asebriy ◽  
Mercedes Vázquez-Vílchez ◽  
...  
Keyword(s):  

Author(s):  
T. Lloyd ◽  
H. McCallion

Developments in high-speed electronic computers have greatly influenced the progress in fluid film lubrication over the past ten years. Static and dynamic oil film parameters have been computed for a wide range of finite geometries, for hydrostatic and hydrodynamic bearings lubricated by compressible and incompressible lubricants. These are either sufficient in themselves or else act as a yardstick against which approximate formulas may be tested. Much use has been made of iterative finite difference schemes, which are particularly well suited to digital computers, and these methods are now more fully understood. Other methods of solution include direct inversion of finite difference matrices and solution by expression of the pressure by some infinite series, a finite number of terms of which give adequate representation. Besides the increase in design data available, there has been substantial progress through a re-examination of the effects of modifying some of the assumptions inherent in most of the available solutions of the Reynolds equation. These include the assumption of constant lubricant viscosity, of rigid surfaces and of laminar flow. Major progress has been witnessed in two fields. The interaction of the lubricant film with elastic boundaries has been shown to be of prime importance in highly loaded contacts such as gears. This has led to the development of the special topic of elastohydrodynamic lubrication theory. The applicability of gas bearings in such growing industries as computers, space vehicles and nuclear reactors has resulted in great activity and progress in this field.


Sign in / Sign up

Export Citation Format

Share Document