NUMERICAL INVESTIGATIONS OF RAPID HEATING IN THRUST BELTS AND IMPLICATIONS FOR METAMORPHISM IN THE SCANDIAN OROGENIC WEDGE, NW SCOTLAND

2020 ◽  
Author(s):  
James Thigpen ◽  
◽  
Kyle T. Ashley ◽  
Calvin A. Mako ◽  
Richard D. Law ◽  
...  
2006 ◽  
Vol 177 (5) ◽  
pp. 267-282 ◽  
Author(s):  
Ana Crespo-Blanc ◽  
Dominique Frizon de Lamotte

Abstract The Betics and Rif cordillera constitute the northern and southern segments of the Gibraltar arc. Two different fold-and-thrust belts, deriving from the South Iberian and Maghrebian paleomargins respectively, developed in front of this orogenic system. By contrast, the Flysch Trough units and the overlying Alboran crustal domain (internal zones), which are situated in the uppermost part of the orogenic wedge, are common to both branches of the arc. The Flyschs Trough units constitute an inactive accretionary prism, derived from a deep elongated trough. From three large-scale profiles and some lithostratigraphic features of the involved sedimentary sequences, the Betic and Rif external domains are compared, mainly from a structural point of view. Although they are generally considered to show major similarities, the Betic and Rif external domains are in fact strikingly different, mainly concerning the structural style, deformation timing and metamorphism: a) the thick-skinned structure in the External Rif domain vs thin-skinned in the Subbetic domain; b) the pre-Oligocene and Miocene stacking in the External Rif domain vs the exclusively Miocene one in the Subbetic domain, and c) the metamorphism present only in part of the External Rif domain (low-grade greenschists facies). By contrast, it was not possible to establish any difference in structural style and deformation timing between the Flysch units outcropping in both branches of the Gibraltar arc.


2016 ◽  
Vol 153 (5-6) ◽  
pp. 1110-1135 ◽  
Author(s):  
P. GRANADO ◽  
W. THÖNY ◽  
N. CARRERA ◽  
O. GRATZER ◽  
P. STRAUSS ◽  
...  

AbstractThe late Eocene – early Miocene Alpine–Carpathian fold-and-thrust belt (FTB) lies in the transition between the Eastern Alps and the Western Carpathians, SE of the Bohemian crystalline massif. Our study shows the involvement of crystalline basement from the former European Jurassic continental margin in two distinct events. A first extensional event coeval with Eggerian–Karpatian (c. 28–16 Ma) thin-skinned thrusting reactivated the rift basement fault array and resulted from the large degree of lower plate bending promoted by high lateral gradients of lithospheric strength and slab pull forces. Slab break-off during the final stages of collision around Karpatian times (c. 17–16 Ma) promoted large-wavelength uplift and an excessive topographic load. This load was reduced by broadening the orogenic wedge through the reactivation of the lower-plate deep detachment beneath and ahead of the thin-skinned thrust front (with the accompanying positive inversion of the basement fault array) and ultimately, by the collapse of the hinterland summits, enhanced by transtensional faulting. Although this work specifically deals with the involvement of the basement in the Alpine–Carpathian Junction, the main conclusions are of general interest to the understanding of orogenic systems.


2008 ◽  
Vol 179 (3) ◽  
pp. 297-314 ◽  
Author(s):  
Cécile Bonnet ◽  
Jacques Malavieille ◽  
Jon Mosar

Abstract The mechanical equilibrium of an orogenic wedge is maintained thanks to interactions between tectonic processes and surface processes. To better constrain the influence of erosion and sedimentation on the evolution of orogens, we performed a series of analogue models based on the tapered wedge principle, varying the amounts of erosion and sedimentation. The models develop by frontal accretion in the foreland basin and by simple underthrusting and subsequent underplating in the hinterland. The variations in rates of erosion and sedimentation strongly modify the extent, the morphology, the structures, the timing of development and the material paths in the different models. Under certain conditions, entire structural units can be formed and subsequently eroded out of the geological record, leading to important underestimations when restoring sections. Particles located in the converging lower-plate or in the upper-plate show complex uplift paths related to tectonic stages. The correlation between models and three Alpine tectonic cross-sections emphasizes the role of erosion and sedimentation on the dynamics and development of the orogen and adjacent Molasse basin. Along strike changes in the present structure of the orogen could be explained in part by differences in surface processes.


Author(s):  
T.S. Savage ◽  
R. Ai ◽  
D. Dunn ◽  
L.D. Marks

The use of lasers for surface annealing, heating and/or damage has become a routine practice in the study of materials. Lasers have been closely looked at as an annealing technique for silicon and other semiconductors. They allow for local heating from a beam which can be focused and tuned to different wavelengths for specific tasks. Pulsed dye lasers allow for short, quick bursts which can allow the sample to be rapidly heated and quenched. This short, rapid heating period may be important for cases where diffusion of impurities or dopants may not be desirable.At Northwestern University, a Candela SLL - 250 pulsed dye laser, with a maximum power of 1 Joule/pulse over 350 - 400 nanoseconds, has been set up in conjunction with a Hitachi UHV-H9000 transmission electron microscope. The laser beam is introduced into the surface science chamber through a series of mirrors, a focusing lens and a six inch quartz window.


1984 ◽  
Vol 144 (10) ◽  
pp. 215 ◽  
Author(s):  
S.V. Lebedev ◽  
A.I. Savvatimskii
Keyword(s):  

CIM Journal ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
E. Kucukal ◽  
J. R. Kadambi ◽  
J. Furlan ◽  
R. Visintainer

2006 ◽  
Vol 16 (8) ◽  
pp. 981-996 ◽  
Author(s):  
Richard A. Jepsen ◽  
Sam S. Yoon ◽  
Byron Demosthenous

Sign in / Sign up

Export Citation Format

Share Document