Hydrogen bond surrogate stabilized water soluble 310-helix from a disordered pentapeptide containing coded α-amino acids

2018 ◽  
Vol 59 (26) ◽  
pp. 2515-2519 ◽  
Author(s):  
Sunit Pal ◽  
Erode N. Prabhakaran
1988 ◽  
Vol 153 (4) ◽  
pp. 199-200 ◽  
Author(s):  
E. Mikros ◽  
A. Gaudemer ◽  
R. Pasternack

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramona Wördemann ◽  
Lars Wiefel ◽  
Volker F. Wendisch ◽  
Alexander Steinbüchel

AbstractCyanophycin (multi-l-arginyl-poly-l-aspartic acid; also known as cyanophycin grana peptide [CGP]) is a biopolymer that could be used in various fields, for example, as a potential precursor for the synthesis of polyaspartic acid or for the production of CGP-derived dipeptides. To extend the applications of this polymer, it is therefore of interest to synthesize CGP with different compositions. A recent re-evaluation of the CGP synthesis in C. glutamicum has shown that C. glutamicum is a potentially interesting microorganism for CGP synthesis with a high content of alternative amino acids. This study shows that the amount of alternative amino acids can be increased by using mutants of C. glutamicum with altered amino acid biosynthesis. With the DM1729 mutant, the lysine content in the polymer could be increased up to 33.5 mol%. Furthermore, an ornithine content of up to 12.6 mol% was achieved with ORN2(Pgdh4). How much water-soluble or insoluble CGP is synthesized is strongly related to the used cyanophycin synthetase. CphADh synthesizes soluble CGP exclusively. However, soluble CGP could also be isolated from cells expressing CphA6308Δ1 or CphA6308Δ1_C595S in addition to insoluble CGP in all examined strains. The point mutation in CphA6308Δ1_C595S partially resulted in a higher lysine content. In addition, the CGP content could be increased to 36% of the cell dry weight under optimizing growth conditions in C. glutamicum ATCC13032. All known alternative major amino acids for CGP synthesis (lysine, ornithine, citrulline, and glutamic acid) could be incorporated into CGP in C. glutamicum.


2021 ◽  
Author(s):  
Lamiaa Reda Ahmed ◽  
Ahmed F. M. EL-Mahdy ◽  
Cheng-Tang Pan ◽  
Shiao-Wei Kuo

In this paper, we describe the construction of a new fluorescent hydroxyl- and hydrazone-based covalent organic framework (TFPB-DHTH COF) through the one-pot polycondensation of 1,3,5-tris(4-formylphenyl)benzene (TFPB) and 2,5-dihydroxyterephthalohydrazide (DHTH) under...


2021 ◽  
Vol 26 (3) ◽  
pp. 501-501
Author(s):  
Jun-Ho Kim ◽  
Nam-Hong Kim ◽  
Eun-Ji Kim ◽  
Ji Ho Kim ◽  
Min-Young Lee ◽  
...  

ACS Omega ◽  
2021 ◽  
Author(s):  
Deep S. Bhattacharya ◽  
Aishwarya Bapat ◽  
Denis Svechkarev ◽  
Aaron M. Mohs

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1099
Author(s):  
Virginia Aiassa ◽  
Claudia Garnero ◽  
Marcela R. Longhi ◽  
Ariana Zoppi

Cyclodextrins (CDs) are naturally available water-soluble cyclic oligosaccharides widely used as carriers in the pharmaceutical industry for their ability to modulate several properties of drugs through the formation of drug–CD complexes. The addition of an auxiliary substance when forming multicomponent complexes is an adequate strategy to enhance complexation efficiency and to facilitate the therapeutic applicability of different drugs. This review discusses multicomponent complexation using amino acids; organic acids and bases; and water-soluble polymers as auxiliary excipients. Special attention is given to improved properties by including information on the solubility, dissolution, permeation, stability and bioavailability of several relevant drugs. In addition, the use of multicomponent CD complexes to enhance therapeutic drug effects is summarized.


Foods ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 125 ◽  
Author(s):  
Oya Berkay Karaca ◽  
Mehmet Güven

Effects of proteolytic (Neutrase, Bacillus subtilis-originate, 0.20 (P1) and 0.40 g 100 L−1 (P2)) and lipolytic (Piccantase A, Mucor miehei-originated, 0.05 (L1) and 0.10 g 100 L−1 (L2)) enzyme supplementations to cheese milk on lipolysis and proteolysis characteristics of 90-day ripened cheese samples were investigated in this study. While enzyme supplementation did not have significant effects on titratable acidity, fat and protease-peptone nitrogen ratios of cheese samples, dry matter, salt, protein, water soluble nitrogen, 12% trichloroacetic acid soluble nitrogen ratio (TCA-SN), 5% phosphotungstic acid soluble nitrogen (PTA-SN), casein nitrogen ratios, penetrometer value, total free fatty acids (TFFA) and total free amino acids (TFAA) were significantly influenced by enzyme supplementations. Individual free amino acids (15 of them) were also determined. Free amino acid contents of enzyme-supplemented cheeses were higher than the control cheese and the values increased in all cheese samples with the progress of ripening (p < 0.05). The highest amino acids in all periods of ripening were identified as glutamic acid, lysine, proline and aspartic acid. The major (Ca, P, Na, K, Mg) and minor (Zn, Fe, Cu, Mn) mineral levels of cheeses decreased with the progress of ripening and the effects of enzyme supplementations on these attributes (except for magnesium and manganese) were found to be significant (p < 0.01). As to conclude, enzyme supplementations increased proteolysis and lipolysis and accelerated ripening and thus reduced ripening durations. Especially the enzyme ratios in P1 and L1 cheeses were found to be suitable for reducing the ripening period in White cheese without any adverse effects.


Sign in / Sign up

Export Citation Format

Share Document