Supplementation of insulin-transferrin-sodium selenite in culture medium improves the hypothermic storage of bovine embryos produced in vitro

2020 ◽  
Vol 152 ◽  
pp. 147-155
Author(s):  
Imran Khan ◽  
Ayman Mesalam ◽  
Seok-Hwan Song ◽  
Il-Keun Kong
Author(s):  
Gabriela de Oliveira Fernandes ◽  
Marcella Pecora Milazzotto ◽  
Andrei Antonioni Guedes Fidelis ◽  
Taynan Stonoga Kawamoto ◽  
Ligiane de Oliveira Leme ◽  
...  

Abstract The present study aimed to identify biomarkers to assess the quality of in vitro produced (IVP) bovine embryos in the culture media. IVP embryos on Day (D) 5 of development were transferred to individual drops, where they were maintained for the last 48 h of culture. Thereafter, the medium was collected and the embryos were transferred to the recipients. After pregnancy diagnosis, the media were grouped into the pregnant and nonpregnant groups. The metabolic profiles of the media were analyzed via electrospray ionization mass spectrometry, and the concentrations of pyruvate, lactate, and glutamate were assessed using fluorimetry. The spectrometric profile revealed that the media from embryos from the pregnant group presented a higher signal intensity compared to that of the nonpregnant group; the ions 156.13 Da [M + H]+, 444.33 Da [M + H]+, and 305.97 Da [M + H]+ were identified as biomarkers. Spent culture medium from expanded blastocysts (Bx) that established pregnancy had a greater concentration of pyruvate (p = 0.0174) and lesser concentration of lactate (p = 0.042) than spent culture medium from Bx that did not establish pregnancy. Moreover, pyruvate in the culture media of Bx can predict pregnancy with 90.9% sensitivity and 75% specificity. In conclusion, we identified markers in the culture media that helped in assessing the most viable IVP embryos with a greater potential to establish pregnancy.


2009 ◽  
Vol 76 (8) ◽  
pp. 783-793 ◽  
Author(s):  
M.N. Purpera ◽  
A.M. Giraldo ◽  
C.B. Ballard ◽  
D. Hylan ◽  
R.A. Godke ◽  
...  

2019 ◽  
Vol 31 (2) ◽  
pp. 306
Author(s):  
Monika Nõmm ◽  
Rando Porosk ◽  
Pille Pärn ◽  
Kalle Kilk ◽  
Ursel Soomets ◽  
...  

Selecting high-quality embryos for transfer has been a difficult task when producing bovine embryos invitro. The most used non-invasive method is based on visual observation. Molecular characterisation of embryo growth media has been proposed as a complementary method. In this study we demonstrate a culture medium sampling method for identifying potential embryonic viability markers to predict normal or abnormal embryonic development. During single embryo culture, 20µL culture media was removed at Days 2, 5 and 8 after fertilisation from the same droplet (60µL). In all, 58 samples were analysed using liquid chromatography–mass spectrometry. We demonstrate that it is possible to remove samples from the same culture medium droplets and not significantly affect blastocyst rate (25.2%). Changes in any single low molecular weight compound were not predictive enough. Combining multiple low molecular weight signals made it possible to predict Day 2 and 5 embryo development to the blastocyst stage with an accuracy of 64%. Elevated concentrations of lysophosphatidylethanolamines (m/z=453, 566, 588) in the culture media of Day 8 well-developing embryos were observed. Choline (104m/z) and citrate (215m/z) concentrations were increased in embryos in which development was retarded. Metabolic profiling provides possibilities to identify well-developing embryos before transfer, thus improving pregnancy rates and the number of calves born.


2005 ◽  
Vol 17 (2) ◽  
pp. 204
Author(s):  
A.K. Kadanga ◽  
D. Tesfaye ◽  
S. Ponsuksili ◽  
K. Wimmers ◽  
M. Gilles ◽  
...  

Nitric oxide (NO) is a free radical that serves as a key-signal molecule in various physiological processes including reproduction. Four isoforms of nitric oxide synthase (NOS) have been characterized: endothelial (eNOS), inducible (iNOS), neuronal (nNOS), and mitochondrial (mtNOS). The first two isoforms are reported to be expressed in mouse follicles, oocytes, and pre-implantation embryos (Nishikimi A et al. 2001 Reproduction 122, 957–963). However, the role of any of these isoforms have not yet been investigated in bovine embryos. Here we aimed to examine the role of NOS in in vitro development of bovine embryos by treating embryos with NOS inhibitor, N-omega-L-nitro-arginine methyl esther (L-NAME), and examining the localization of the protein in pre-implantation embryos. Oocytes and embryos were grown in the media with NOS inhibitor added at a level of 0 mM (control), 1 mM, and 10 mM to either maturation or culture medium. Each experiment was conducted in four replicates each containing 100 oocytes for IVP. Cleavage and blastocyst rate were recorded at Days 2 and 7, respectively. Data were analyzed using the General Linear Model in SAS version 8.02 (SAS Institute, Inc., Cary, NC, USA) with the main factors being the level of L-NAME and the point of application. Pairwise comparisons were done using the Tukey test. Protein localization in bovine oocytes and embryos was performed by immunocytochemistry using eNOS- and iNOS-specific antibodies. Embryos were fixed in 3.7% paraformaldehyde, permeabilized in 0.1% Triton-X100, and washed three times in PBS supplemented with BSA. They were incubated with eNOS and iNOS primary antibody (1:200 dilutions) and washed before incubation with secondary antibody conjugated to FITC. After washing they were mounted on glass slides and examined under a confocal laser scanning microscope (Carl Zeiss Jena, Carl Zeiss AG, Oberkochen, Germany). In the controls the primary antibodies were omitted. As shown in the table below, the presence of L-NAME in the maturation medium significantly reduced the cleavage and blastocyst rate independent of the dosage applied. However the presence of L-NAME in the culture medium had an influence only on the blastocyst rate. The immunocytochemical staining results showed that both eNOS and iNOS are expressed in the cytoplasm of the MII oocytes, and during the pre-implantation stage the fluorescence signal was observed in nuclei and cytoplasm. However, the nuclear signal was much weaker. In conclusion, the present study is the first to determine the role of NO and to detect NOS protein in bovine oocytes and pre-implantation embryos. These results indicate that nitric oxide may play an important role as diffusible regulator of bovine oocyte maturation and preimplantation embryo development. Table 1. Effect of l-name addition in maturation or culture medium on embryo development


Zygote ◽  
2012 ◽  
Vol 22 (2) ◽  
pp. 146-157 ◽  
Author(s):  
Daniela Martins Paschoal ◽  
Mateus José Sudano ◽  
Midyan Daroz Guastali ◽  
Rosiára Rosária Dias Maziero ◽  
Letícia Ferrari Crocomo ◽  
...  

SummaryThe objective of this study was to assess the viability and cryotolerance of zebu embryos produced in vitro with or without the addition of fetal calf serum (FCS) and forskolin (F). Embryos produced in vivo were used as a control. Presumptive zygotes were cultured in modified synthetic oviductal fluid supplemented with amino acids (SOFaa), bovine serum albumin (BSA) and with (2.5%) or without (0%) FCS. On day 6 of growth, the embryos from each group were divided into treatments with or without 10 μM F to induce embryonic lipolysis, comprising a total of four experimental groups: 2.5% FCS, 0% FCS, 2.5% + F and 0% + F. For vitrification, embryos were exposed to vitrification solution 1 (5 M EG (ethylene glycol)) for 3 min and then transferred to vitrification solution 2 (7 M EG, 0.5 M galactose solution and 18% (w/v) Ficoll 70) before being introduced to liquid nitrogen. The presence of FCS in the culture medium resulted in the production of embryos with a similar rate of damaged cells compared with in vivo-produced embryos. After vitrification, the 2.5% FCS group had a significantly higher rate of damaged cells when compared with the other groups (P < 0.05). The results of this experiment indicated that the omission of FCS and the addition of forskolin do not have deleterious effect on embryo production rates. In addition, embryos produced in the presence of FCS had greater sensitivity to cryopreservation, but this effect was reversed when forskolin was added to the medium, which improved embryo survival without affecting embryo development and quality after vitrification.


1996 ◽  
Vol 8 (5) ◽  
pp. 835 ◽  
Author(s):  
T Pinyopummintr ◽  
BD Bavister

Effects of amino acids on early bovine embryo development in vitro were examined using a chemically-defined, protein-free culture medium. Bovine embryos produced in vitro were cultured from 18 h to 72 h post insemination in a simple medium containing lactate as the only energy source except for the amino acid treatments. Subsequently, embryos were transferred to TCM-199 supplemented with serum for blastocyst development to substantiate their developmental competence. Treatments were: (1) non-essential amino acids from TCM-199 (NEA); (2) essential amino acids from TCM-199 (EA); (3) NEA+EA; (4) Eagle's minimum essential medium amino acids (MEM AA); (5) 11 amino acids present in HECM-6 (11 AA); and (6) 0.2 mM glutamine (GLN). A higher proportion of embryos (percentage of inseminated ova) cleaved to the > or = 8-cell stage by 72 h post insemination in NEA (56.7%), EA (41.2%), 11 AA (40.3%) and GLN (51.1%) than in either NEA+EA (30.0%) or MEM AA (33.1%). However, after transfer to complex medium, embryos that had developed in EA, as well as those in MEM AA or NEA+EA, produced significantly fewer blastocysts (37.1%, 34.4% and 25.6% respectively) than those in NEA (56.7%), GLN (48.9%) or 11 AA (37.7%). The ability of blastocysts to hatch from their zonae pellucidae was also affected by amino acid treatment during cleavage stages. The present study indicated that the addition of NEA or GLN or 11 AA to a chemically-defined culture medium during the cleavage phase of bovine embryo development increases their subsequent ability to reach the blastocyst stage. These data have implications for understanding the nutritional needs of bovine embryos produced in vitro and for optimizing the composition of culture media to support their development.


2016 ◽  
Vol 28 (8) ◽  
pp. 1172 ◽  
Author(s):  
Luis Baldoceda ◽  
Dominic Gagné ◽  
Christina Ramires Ferreira ◽  
Claude Robert

The decreased rate of pregnancy obtained in cattle using frozen in vitro embryos compared with in vivo embryos has been associated with over-accumulation of intracellular lipid, which causes cell damage during cryopreservation. It is believed that the higher lipid content of blastomeres of bovine embryos produced in vitro results in darker-coloured cytoplasm, which could be a consequence of impaired mitochondrial function. In this study, l-carnitine was used as a treatment to reduce embryonic lipid content by increasing metabolism in cultured bovine embryos. We have observed previously that in vivo embryos of different dairy breeds collected from cows housed and fed under the same conditions differed in lipid content and metabolism. As such, breed effects between Holstein and Jersey were also examined in terms of general appearance, lipid composition, mitochondrial activity and gene expression. Adding l-carnitine to the embryo culture medium reduced the lipid content in both breeds due to increased mitochondrial activity. The response to l-carnitine was weaker in Jersey than in Holstein embryos. Our results thus show that genetics influence the response of bovine embryos to stimulation of mitochondrial metabolism.


Sign in / Sign up

Export Citation Format

Share Document