scholarly journals Whole genome sequencing as a typing tool for foodborne pathogens like Listeria monocytogenes – The way towards global harmonisation and data exchange

2018 ◽  
Vol 73 ◽  
pp. 67-75 ◽  
Author(s):  
Stefanie Lüth ◽  
Sylvia Kleta ◽  
Sascha Al Dahouk
2015 ◽  
Vol 81 (17) ◽  
pp. 6024-6037 ◽  
Author(s):  
Matthew J. Stasiewicz ◽  
Haley F. Oliver ◽  
Martin Wiedmann ◽  
Henk C. den Bakker

ABSTRACTWhile the food-borne pathogenListeria monocytogenescan persist in food associated environments, there are no whole-genome sequence (WGS) based methods to differentiate persistent from sporadic strains. Whole-genome sequencing of 188 isolates from a longitudinal study ofL. monocytogenesin retail delis was used to (i) apply single-nucleotide polymorphism (SNP)-based phylogenetics for subtyping ofL. monocytogenes, (ii) use SNP counts to differentiate persistent from repeatedly reintroduced strains, and (iii) identify genetic determinants ofL. monocytogenespersistence. WGS analysis revealed three prophage regions that explained differences between three pairs of phylogenetically similar populations with pulsed-field gel electrophoresis types that differed by ≤3 bands. WGS-SNP-based phylogenetics found that putatively persistentL. monocytogenesrepresent SNP patterns (i) unique to a single retail deli, supporting persistence within the deli (11 clades), (ii) unique to a single state, supporting clonal spread within a state (7 clades), or (iii) spanning multiple states (5 clades). Isolates that formed one of 11 deli-specific clades differed by a median of 10 SNPs or fewer. Isolates from 12 putative persistence events had significantly fewer SNPs (median, 2 to 22 SNPs) than between isolates of the same subtype from other delis (median up to 77 SNPs), supporting persistence of the strain. In 13 events, nearly indistinguishable isolates (0 to 1 SNP) were found across multiple delis. No individual genes were enriched among persistent isolates compared to sporadic isolates. Our data show that WGS analysis improves food-borne pathogen subtyping and identification of persistent bacterial pathogens in food associated environments.


2017 ◽  
Vol 5 (49) ◽  
Author(s):  
Taylor W. Bailey ◽  
Naila C. do Nascimento ◽  
Arun K. Bhunia

ABSTRACT Listeria monocytogenes is an opportunistic invasive foodborne pathogen. Here, we performed whole-genome sequencing of L. monocytogenes strain F4244 (serotype 4b) using Illumina sequencing. The sequence showed 94.5% identity with strain F2365, serotype 4b, and 90.6% with EGD-e, serotype 1/2a.


2019 ◽  
Vol 102 (7) ◽  
pp. 6032-6036
Author(s):  
M. Ricchi ◽  
E. Scaltriti ◽  
G. Cammi ◽  
C. Garbarino ◽  
N. Arrigoni ◽  
...  

2018 ◽  
Vol 82 (1) ◽  
pp. 30-38 ◽  
Author(s):  
RICHARD ELSON ◽  
ADEDOYIN AWOFISAYO-OKUYELU ◽  
TREVOR GREENER ◽  
CRAIG SWIFT ◽  
ANAÏS PAINSET ◽  
...  

ABSTRACT This article describes the identification and investigation of two extended outbreaks of listeriosis in which crabmeat was identified as the vehicle of infection. Comparing contemporary and retrospective typing data of Listeria monocytogenes isolates from clinical cases and from food and food processing environments allowed the detection of cases going back several years. This information, combined with the analysis of routinely collected enhanced surveillance data, helped to direct the investigation and identify the vehicle of infection. Retrospective whole genome sequencing (WGS) analysis of isolates provided robust microbiological evidence of links between cases, foods, and the environments in which they were produced and demonstrated that for some cases and foods, identified by fluorescent amplified fragment length polymorphism, the molecular typing method in routine use at the time, were not part of the outbreak. WGS analysis also showed that the strains causing illness had persisted in two food production environments for many years and in one producer had evolved into two strains over a period of around 8 years. This article demonstrates the value of reviewing L. monocytogenes typing data from clinical cases together with that from foods as a means of identifying potential vehicles and sources of infection in outbreaks of listeriosis. It illustrates the importance of reviewing retrospective L. monocytogenes typing alongside enhanced surveillance data to characterize extended outbreaks and inform control measures. Also, this article highlights the advantages of WGS analysis for strain discrimination and clarification of evolutionary relationships that refine outbreak investigations and improve our understanding of L. monocytogenes in the food chain.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Arthur W. Pightling ◽  
Hugh Rand ◽  
Errol Strain ◽  
Franco Pagotto

Listeria monocytogenesis a foodborne pathogen that causes severe illness. Thus, ongoing efforts at real-time whole-genome sequencing are of utmost importance. However, it is also important that retrospective analyses that place these data into context be performed. Here, we present the genome sequence of strain HPB2088, which was collected in 1994.


2015 ◽  
Vol 54 (2) ◽  
pp. 333-342 ◽  
Author(s):  
Jason C. Kwong ◽  
Karolina Mercoulia ◽  
Takehiro Tomita ◽  
Marion Easton ◽  
Hua Y. Li ◽  
...  

Whole-genome sequencing (WGS) has emerged as a powerful tool for comparing bacterial isolates in outbreak detection and investigation. Here we demonstrate that WGS performed prospectively for national epidemiologic surveillance ofListeria monocytogeneshas the capacity to be superior to our current approaches using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), multilocus variable-number tandem-repeat analysis (MLVA), binary typing, and serotyping. Initially 423L. monocytogenesisolates underwent WGS, and comparisons uncovered a diverse genetic population structure derived from three distinct lineages. MLST, binary typing, and serotyping results inferredin silicofrom the WGS data were highly concordant (>99%) with laboratory typing performed in parallel. However, WGS was able to identify distinct nested clusters within groups of isolates that were otherwise indistinguishable using our current typing methods. Routine WGS was then used for prospective epidemiologic surveillance on a further 97L. monocytogenesisolates over a 12-month period, which provided a greater level of discrimination than that of conventional typing for inferring linkage to point source outbreaks. A risk-based alert system based on WGS similarity was used to inform epidemiologists required to act on the data. Our experience shows that WGS can be adopted for prospectiveL. monocytogenessurveillance and investigated for other pathogens relevant to public health.


Sign in / Sign up

Export Citation Format

Share Document